gzyryjj.com-韩国三级做爰电梯,蜜臀av人妻国产精品李丽,成人性生生活性生生交,韩国无码无遮挡在线观看

技術文章/ Article

您的位置:首頁  /  技術文章  /  一種蛋白酶的自述

一種蛋白酶的自述

更新時間:2021-04-01      瀏覽次數:2874

The CBL-Interacting Protein Kinase NtCIPK23 Positively
Regulates Seed Germination and Early Seedling Development
in Tobacco (Nicotiana tabacum L.)
Sujuan Shi
1,2,3,†
, Lulu An
1,2,† , Jingjing Mao 1,2
, Oluwaseun Olayemi Aluko
1,2 , Zia Ullah 1,2 ,
Fangzheng Xu
1,2 , Guanshan Liu 1 , Haobao Liu 1, * and Qian Wang 1, *

 

Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China;

2
Graduate School of Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
3
Technology Center, Shanghai Tobacco Co., Ltd., Beijing 101121, China
† These authors contributed equally to this work.

 

Abstract: CBL-interacting protein kinase (CIPK) family is a unique group of serine/threonine protein
kinase family identified in plants. Among this family, AtCIPK23 and its homologs in some plants are
taken as a notable group for their importance in ions transport and stress responses. However, there
are limited reports on their roles in seedling growth and development, especially in Solanaceae plants.
In this study, NtCIPK23, a homolog of AtCIPK23 was cloned from Nicotiana tabacum. Expression
analysis showed that NtCIPK23 is mainly expressed in the radicle, hypocotyl, and cotyledons of
young tobacco seedlings. The transcriptional level of NtCIPK23 changes rapidly and spatiotemporally
during seed germination and early seedling growth. To study the biological function of NtCIPK23
at these stages, the overexpressing and CRISPR/Cas9-mediated knock-out (ntcipk23) tobacco lines
were generated. Phenotype analysis indicated that knock-out of NtCIPK23 significantly delays seed
germination and the appearance of green cotyledon of young tobacco seedling. Overexpression
of NtCIPK23 promotes cotyledon expansion and hypocotyl elongation of young tobacco seedlings.
The expression of NtCIPK23 in hypocotyl is strongly upregulated by darkness and inhibited under
light, suggesting that a regulatory mechanism of light might underlie. Consistently, a more obvious
difference in hypocotyl length among different tobacco materials was observed in the dark, compared
to that under the light, indicating that the upregulation of NtCIPK23 contributes greatly to the
hypocotyl elongation. Taken together, NtCIPK23 not only enhances tobacco seed germination, but
also accelerate early seedling growth by promoting cotyledon greening rate, cotyledon expansion
and hypocotyl elongation of young tobacco seedlings.

 

1. Introduction
Calcium (Ca 2+ ) is a ubiquitous second messenger in the plant. When plants are stim-
ulated by environmental and developmental changes, the concentrations of intracellular
Ca 2+ changes spatially and temporally, and form diverse calcium signals that are sensed
and decoded by different calcium sensors [ 1 ]. Among the sensors, the Calcineurin B-like
protein (CBL) family plays an important role in plant responses to stimuli [ 2 , 3 ]. CBLs
always interact with CBL-interacting protein kinase (CIPK) family to form a complicated
but flexible CBL-CIPK network [ 3 , 4 ]. The latter participates in the regulation of plant
responses to biotic and abiotic stresses, through the phosphorylation of downstream target

proteins, thus subsequently influencing their activities [ 5 ]. CIPK family is a plant-specific
class of serine/threonine protein kinase family, which was also classified as Group 3 of the
sucrose non-fermenting 1-related kinases (SnRK3) [ 6 ]. The CIPK family is the key factor
linking the upstream Ca 2+ signals to downstream targets in plant stress response signaling
pathways [ 2 ]. Generally, CIPKs are structurally conserved, possessing an N-terminal ki-
nase catalytic domain, and a C-terminal regulatory domain harboring a NAF/FISL motif
and a phosphatase interaction motif. CIPKs interact with the CBLs via their NAF/FISL
module [7].
Many CIPK family members from different plant species, including Arabidopsis [ 5 ],
rice [ 8 ], maize [ 9 ], wheat [ 10 ], and soybean [ 11 ] were isolated and some are deeply eluci-
dated. Among these members, AtCIPK23 and its homologs (here we refer to them simply as
CIPK23s) are more notable, due to their roles in the regulation of plant responses to abiotic
and biotic stresses. Generally, the functions of CIPK23s in these processes are established by
its regulation in ion transport. In A. thaliana, two pathways involved in potassium signaling
cascade; AtCBL1/9-AtCIPK23-Arabidopsis K + Transporter 1 (AKT1) and AtCBL1-AtCIPK23-
High-Affinity K + Transporter 5 (AtHAK5) pathway, were identified to positively regulate
K + acquisition under low K + condition [ 12 – 15 ]. Similarly, the OsCBL1-OsCIPK23-OsAKT1
and VvCBL1-VvCIPK4-K + Channel (VvK1.2) pathways were also characterized in rice
(Oryza sativa) [ 16 ] and grape (Vitis vinifera) [ 17 ], respectively. Under high external nitrate
(NO 3 − ) concentration, the AtCBL1/9-AtCIPK23-Nitrate Transporter 1.1 (AtNRT1.1/CHL1)
pathway and the AtCBL9-AtCIPK23-Nitrate Transporter 2.1 (AtNRT2.1) pathway were
reported to inhibit NO 3 - transport [ 18 , 19 ]. Under low external nitrate conditions, the
AtCBL1/9-AtCIPK23-AtCHL1 pathway positively regulates NO 3 - transport [ 18 ]. When
the Arabidopsis roots were exposed to high ammonium (NH 4 + ) conditions, AtCIPK23 leads
to the allosteric inactivation of high affinity Ammonium Transporter 1 (AMT1) through
phosphorylation, and subsequently inhibits NH 4 + transport, thus protecting the plants
from NH 4 + toxicity [ 20 ]. In our recent work, AtCIPK23 is strongly upregulated in leaves
and roots, significantly alleviates NH 4 + toxicity triggered by high NH 4 + /K + ratio, and
reduces the leaf chlorosis and root growth inhibition by regulating the contents of NH 4 +
and K + in these tissues [ 21 ]. Under excessive magnesium (Mg 2+ ) stress, AtCBL2/3 interact
with AtCIPK3/9/23/26, to sequester Mg 2+ into the vacuole and protect plants from Mg 2+
toxicity [ 22 ]. AtCIPK23 also regulates the stomatal closure by controlling anion and K +
efflux under drought stress by forming AtCBL1/9-AtCIPK23 complex to activate Slow An-
ion Channel Associated 1 (SLAC1) and Slow Anion Channel 1 Homolog 3 (SLAH3) [ 23 , 24 ].
Recently, the CIPK23 protein was also identified to participate in biotic stress responses.
In cassava (Manihot esculenta), MeCBL1/9-MeCIPK23 positively regulates plant defense
response to Xanthomonas axonopodis pv. Manihotis [ 25 ]. OsCIPK23 was found to be mainly
expressed in pistil and anther, and is up-regulated during pollination. Additionally, the
pollen grains of OsCIPK23-RNAi lines were irregularly shaped or pear-shaped and con-
tained a large empty central vacuole without any starch granules, resulting in sterility and
reduced seed set [ 26 ]. Through a sensitivity analysis of atcipk23 seeds to ABA, AtCIPK23
was found to function in seed dormancy and germination of A. thaliana [ 27 ], indicating that
ABA signaling might be enhanced in AtCIPK23 loss-of-function materials. A recent study
indicated that, AtCIPK23 regulates blue light-dependent stomatal opening in A. thaliana
through activation of K + in channels [28].
Although the functions of CIPK23s were extensively investigated in A. thaliana and
some other plants. However, there are very few reports about their roles in plant growth
and development, especially in Solanaceae plants, most of which are economically important.
Tobacco is an ideal model plant in the gene functional research of solanaceous plants. In
this study, NtCIPK23, a homolog of AtCIPK23, was cloned from Nicotiana tabacum L. cv.
Zhongyan 100 (ZY100), and its tissue expression analysis during the seedling emergence
was initially analyzed in detail. To identify its biological function, tobacco materials with
differentexpressionlevelsofNtCIPK23wereobtainedandcomparativephenotypicanalysis
during the early seedling growth and development was then performed. The results might provide new clues to unveil the biological functions of CIPK23s in solanaceous plants and be of considerable importance for crop production.

 

2. Results
2.1. Sequence Analysis and the Subcellular Localization of NtCIPK23
Based on the bioinformatic analysis, the homolog of AtCIPK23 (GenBank No. XM_0165
94430.1) was cloned directly from N. tabacum L. cv. ZY100 and was designated as NtCIPK23.
NtCIPK23 shares 83.56% amino acid sequence similarity with AtCIPK23. Similar to other
CIPK proteins, the NtCIPK23 protein harbors the conserved activation loop and NAF motif
that is necessary to bind CBL proteins (Figure 1a) [ 5 ]. Phylogenetic analysis indicated that
CIPK23 gene is conserved during species evolution, and NtCIPK23 is on the same branch
with AtCIPK23 and other CIPK23s, in the phylogenetic tree (Figure 1b).

Figure 1. Sequence analysis and subcellular localization of NtCIPK23. ( a ) Amino acid alignment of NtCIPK23 with
AtCIPK23. Identical and similar amino acids are shaded black and grey, respectively. The kinase activation loop and the
NAF motif, which is named by the conserved amino acids Asn (N), Ala (A), and Phe (F) and is critical for the CBL-CIPK
interaction, are also displayed. ( b ) Phylogenetic analysis of NtCIPK23 and CIPKs in Arabidopsis, rice, and other plants. At
and Os represent A. thaliana and O. sativa, respectively. ( c ) Subcellular localization of NtCIPK23 in the epidermal cells of
N. benthamiana leaves. The red arrows refer to PM. PM marker (pm-rk CD3-1007 plasmid) is A. thaliana fatty acid desaturase
8 (AtFAD8) fused with red fluorescent protein mCherry. AtFAD8 is located in plasma membrane and chloroplast envelope.
Scale bar is 25 µm.

 

In plants, subcellular localization analysis of a protein can provide useful clues for its
functional identification. It was found that, AtCIPK23 and OsCIPK23 are located at the
plasma membrane (PM) and play a key role in ion transport, mainly by phosphorylating
some PM-located channels and transporters [ 15 , 16 ]. To identify the subcellular localization
of NtCIPK23, a plasmid expressing NtCIPK23 fused with green fluorescent protein (GFP) at
its C terminus (NtCIPK23-GFP) was constructed and introduced into the epidermal cells of
N. benthamiana leaves. Confocal fluorescence microscopy analysis indicated that the strongGFP signal of NtCIPK23-GFP was detected mainly at the PM of the epidermal cells, which coincided with the PM marker pm-rk CD3-1007 plasmid fused with red fluorescent protein mCherry [ 29 ] ( Figure 1c). While a fraction of GFP signal was also detected in the cytoplasm and nucleus. As a negative control, a diffuse pattern of fluorescence that was both nuclear
and cytoplasmic was observed in the cells expressing free GFP (data not shown). The results
indicated that NtCIPK23 is mainly located on the PM ( Figure 1c) . It might act as other
CIPK23s and mainly function at the PM to phosphorylate some PM-located targets [30].

 

2.2. Expression Pattern of NtCIPK23 during Seed Germination and Early Seedling Growth
As bioinformatic analysis of the native promoter always provides new starting points
for the functional characterization of a gene, here, a 2004 bp promoter segment upstream
of the start codon of NtCIPK23 was obtained from ZY100, based on the information
provided by the NCBI Database  The cis-acting
elements of NtCIPK23 promoter were then predicted by the online software PlantCARE
 . Besides the eukaryotic
transcriptional regulatory elements (TATA-box and CAAT-box), there are other kinds of
cis-acting elements distributed in the promoter, including light response elements, hormone
response elements, anaerobic response elements, and stress defense-related components
(Table S1). The number and relative positions of these cis-acting elements are shown in
Figure 2a. The analysis indicated that the transcription of NtCIPK23 might be regulated by
various environmental signals, such as light, hormone, and some stresses, which hinted that
NtCIPK23 might contribute to the growth and developmental processes in tobacco plants.

Figure 2. Expression pattern analysis of NtCIPK23. ( a ) The schematic distribution of cis-acting elements of NtCIPK23
promoter. The cis-acting elements were predicted by the online software PlantCARE . Different colors and shapes represent different cis-acting elements. The characters in the graph
indicate the number of predicted elements. “+” and “-” represent the sense and antisense strand, respectively. ( b ) The
GUS staining result at different growth stages of ProNtCIPK23::GUS transgenic plants. The stages include micropylar
endosperm rupture and radicle emergence at 3 DAS (I), radicle elongation (II) and hypocotyl elongation during 3~3.5 DAS
(III), cotyledon emergence at 3.5~5 DAS (IV), cotyledon expansion during 5~6 DAS (V), cotyledon maturation during
6~8 DAS (VI), emergence of the first two leaves at 10 DAS (VII), and expansion of the first two leaves at 14 DAS (VIII). The
experiment was performed using three independent repeats (n ≥ 9 plants). Scale bar is 0.5 cm

A GUS staining assay was then conducted to study the tissue expression of NtCIPK23
during seedling germination and early developmental stages, using the ProNtCIPK23::GUS
transgenic lines. Evident GUS activity was detected in the radicle and hypocotyl when
the testa was ruptured and the radicle was exposed (Figure 2b(I,II)). During the process
of hypocotyl elongation and cotyledon emergence, a slight decrease of GUS activity was
observed in the hypocotyl and nascent cotyledons, while no obvious activity was detected
in the radicle tissue (Figure 2b(III,IV)). At the expansion stage of cotyledons, strong GUS
activity was detected in the hypocotyl and two cotyledons (Figure 2b(V)), and when the
cotyledons are fully expanded, GUS activity in the hypocotyl and cotyledons was at its
peak (Figure 2b(VI)). After emergence of two leaves, the GUS activity in the hypocotyl and
cotyledons declined rapidly to a much lower level, and no obvious activity was detected
at the two young leaves (Figure 2b(VII)). Interestingly, it was observed that, during the
growth of the two leaves, strong GUS activity in two cotyledons was recovered to a higher
level (Figure 2b(VIII). GUS staining assay indicated that a series of spatiotemporal changes
of NtCIPK23 occur between the seed germination and early seedling developmental stages,
suggesting that NtCIPK23 transcription might be controlled under a sophisticated regula-
tory network.

 

2.3. NtCIPK23 Plays a Positive Role in Seed Germination and Post-Germination Seedling Growth
under Normal Conditions
Evident GUS activity in the radicle and hypocotyl during germination and early
seedling growth stages implied that NtCIPK23 might function in this process. To clarify its
role, the overexpressing and loss-of-function mutant lines of NtCIPK23 were generated,
respectively. Two overexpressing lines (OE15 and OE25, Figure 3a) and one typical mutant
line, ntcipk23, were selected for the subsequent phenotype analysis. The ntcipk23 mutant
line was obtained by the CRISPR-Cas9 technique (Figure S1), and the C deletion at position
67 of NtCIPK23 CDS results in a frameshift at the 5 0 -terminal region of its transcripts and
leads to a subsequent translation termination (Figure 3b, Figure S2).
Germination rate and green cotyledon percentage of these materials under normal
growth conditions were evaluated. Generally, the radicles of ZY100 seedlings normally
break through seed coat within 3 DAS, and the cotyledons then emerge and turn green
2~4 days later. The seeds of overexpressing lines germinated more rapidly and the
radicles elongated at a higher rate, compared to the wild type ZY100, while ntcipk23
seeds germinated more slowly and the radicles elongated at a lower rate, although they
all germinated eventually (Figure 3c,d). Green cotyledon percentage of these materials
was then evaluated for post-germination seedling growth. No obvious difference was
observed in the time taken for the cotyledon to emerge and the percentage of both ZY100
and overexpressing lines (Figure 3e), which might be triggered by the relative higher
expression level in the hypocotyl in wild type plants. At 8 DAS, all seeds of the four
plant materials germinated well. The result demonstrated that NtCIPK23 plays a positive
role in the process of seed germination and post-germination seedling growth, under
normal growth conditions, and knock-out of the gene might affect seed vigor but not the
ability to germinate (Figure 3f).

 Tobacco Seedlings
Strong GUS activity was observed in the nascent cotyledons, so the cotyledon
growth of different tobacco materials was observed. It was found that, compared to
ZY100, the overexpressing lines possessed larger cotyledons, while those of ntcipk23 were
smaller (Figure 4a). When the cotyledons were fully expanded and the leaves emerged,
the cotyledon area of each material was measured. The cotyledon area of
NtCIPK23-overexpressing lines was significantly larger than that of ZY100, while the area

2.4. Overexpression of NtCIPK23 Promotes the Cotyledon Expansion of Young Tobacco Seedlings
Strong GUS activity was observed in the nascent cotyledons, so the cotyledon growth
of different tobacco materials was observed. It was found that, compared to ZY100, the
overexpressing lines possessed larger cotyledons, while those of ntcipk23 were smaller
(Figure 4a). When the cotyledons were fully expanded and the leaves emerged, the cotyle-
don area of each material was measured. The cotyledon area of NtCIPK23-overexpressing
lines was significantly larger than that of ZY100, while the area of ntcipk23 was indicatedto be slightly smaller (Figure 4b,c). The data indicated that overexpression of NtCIPK23
promotes the cotyledon expansion of tobacco seedlings

Figure 4. The phenotyping and data analysis of the cotyledon area of different tobacco materials. ( a ) Tobacco plants with
different cotyledon size at 8 DAS. Scale bar is 0.5 cm. ( b ) Cotyledons of different tobacco materials. Scale bar is 0.5 cm.
( c ) The analysis of cotyledon area of different tobacco materials. Different lowercase letters (a and b) indicate significant
differences at p < 0.05 according to the LSD test. The data are shown as the mean ± SE. n = 24, independent samples
collected from three experiments.

2.5. NtCIPK23 Positively Regulates the Hypocotyl Elongation of Young Tobacco Seedlings
Strong GUS activity was observed in the tobacco hypocotyl during seed germina-
tion, so the hypocotyl length of different tobacco materials was quantified. It was found
that, under constant light, the hypocotyl length of these two overexpressing lines was the
longest, followed by the wild type ZY100, and the nicipk23 mutant possessed the shortest
hypocotyl, indicating the promotive function of NtCIPK23 in hypocotyl elongation (Fig-
ure 5a,b). As the crucial function of light in hypocotyl elongation and the distribution of
some light-responsive cis-acting elements was predicted in the NtCIPK23 promoter, we
investigated the influence of light on NtCIPK23′s expression by GUS staining (Figure S3)
and qRT-PCR (Figure 5c). It was shown that the expression of NtCIPK23 in hypocotyl in
the dark treatment was at a higher level, which was about ten times more than that undand upregulated in the dark. To further analyze the role of NtCIPK23 in hypocotyls, a
germination experiment under dark conditions was performed. It was found that a more
evident difference of hypocotyl length between ntcipk23 and ZY100 was observed than that
under the light, which means the upregulation of NtCIPK23 triggered in the dark promotes
the hypocotyl elongation (Figure 5d,e). Consistently, the hypocotyl length of NtCIPK23-
overexpressing lines was also significantly longer than that of ZY100 (Figure 5d,e) . Taken
together, NtCIPK23 works as a positive regulator in the process of hypocotyl elongation

Figure 5. The phenotype and data analysis of hypocotyl in tobacco materials with different NtCIPK23 expression levels.
( a,b ) Hypocotyl phenotype of different tobacco materials under light. ( c ) Expression of NtCIPK23 in the hypocotyl of wild
type ZY100 seedlings under the light and dark conditions. The relative transcript levels were normalized to the abundance
of reference gene NtL25. ( d,e ) Hypocotyl phenotype of different tobacco materials in the dark. The plants under dark
(wrapped by aluminum foil) were taken out at 6 DAS. Different lowercase letters ( a – c ) indicate significant differences at
p < 0.05 according to the LSD test. The data are shown as the mean ± SE. n ≥ 20 plants, independent samples collected
from three experiments. Scale bar is 1.0 

Discussion
To date, CIPK23 was found to act as a major regulator driving root responses to di-
verse environmental stimuli, including drought, salinity, and nutrient imbalances [31–
33]. However, only a few investigations were conducted to characterize their roles in
plant normal growth and development. Moreover, there are few reports about CIPK23
genes in Solanaceae. In this study, a solanaceous CIPK23, NtCIPK23, was cloned from N.
tabacum and its function in tobacco growth and development was first characterized.
Through the analysis of expression pattern and phenotyping of tobacco lines with dif-
ferent NtCIPK23 expression levels, NtCIPK23 was found to enhance seed germination
and early seedling development in tobacco.
For most dicotyledonous plants, cotyledon is the main storage organ that provides
nutrients for seed germination and early seedling growth, and it is also the first organ
for photosynthesis after germination [34]. Therefore, cotyledon plays a critical role in the
early stage of seed germination and seedling growth. Here, it was found that the expres-
sion level of NtCIPK23 was dramatically enhanced during cotyledon greening and
reached a peak when the cotyledons were fully expanded (Figure 2b(Ⅴ,Ⅵ)). Consistent-
ly, seed germination rate and cotyledon greening rate, as well as the cotyledon size,
were all shown to be related to the relative expression level of NtCIPK23 (Figures 3 and
4). The results hinted that NtCIPK23 might function as an activator to facilitate nutrient
Figure 5. The phenotype and data analysis of hypocotyl in tobacco materials with different NtCIPK23 expression levels.
( a,b ) Hypocotyl phenotype of different tobacco materials under light. ( c ) Expression of NtCIPK23 in the hypocotyl of wild
type ZY100 seedlings under the light and dark conditions. The relative transcript levels were normalized to the abundance
of reference gene NtL25. ( d,e ) Hypocotyl phenotype of different tobacco materials in the dark. The plants under dark
(wrapped by aluminum foil) were taken out at 6 DAS. Different lowercase letters ( a – c ) indicate significant differences at
p < 0.05 according to the LSD test. The data are shown as the mean ± SE. n ≥ 20 plants, independent samples collected
from three experiments. Scale bar is 1.0 cm.

3. Discussion
To date, CIPK23 was found to act as a major regulator driving root responses to
diverse environmental stimuli, including drought, salinity, and nutrient imbalances [ 31 – 33 ].
However, only a few investigations were conducted to characterize their roles in plant
normal growth and development. Moreover, there are few reports about CIPK23 genes in
Solanaceae. In this study, a solanaceous CIPK23, NtCIPK23, was cloned from N. tabacum
and its function in tobacco growth and development was first characterized. Through the
analysis of expression pattern and phenotyping of tobacco lines with different NtCIPK23
expression levels, NtCIPK23 was found to enhance seed germination and early seedling
development in tobacco.
For most dicotyledonous plants, cotyledon is the main storage organ that provides
nutrients for seed germination and early seedling growth, and it is also the first organ
for photosynthesis after germination [ 34 ]. Therefore, cotyledon plays a critical role in
the early stage of seed germination and seedling growth. 

 

expression level of NtCIPK23 was dramatically enhanced during cotyledon greening and
reached a peak when the cotyledons were fully expanded (Figure 2b(V,VI)). Consistently,
seed germination rate and cotyledon greening rate, as well as the cotyledon size, were all
shown to be related to the relative expression level of NtCIPK23 (Figures 3 and 4). The
results hinted that NtCIPK23 might function as an activator to facilitate nutrient conversion,
chloroplast development or photosynthesis establishment, and thus positively promote
seed germination, cotyledon extension, and greening.
NtCIPK23 was abundantly expressed in hypocotyl, and its expression level was
greatly upregulated in dark treatment (Figures 2 and 5c, Figure S3). Obvious inhibition
of hypocotyl elongation in the ntcipk23 mutant was observed (Figure 5a). Hypocotyl is
the structure connecting root, shoot tip, and leaves in young seedlings. Its elongation is
a critical growth stage for the epigaeous seedlings, to geminate in the dark in soil and
reach for light [ 34 ]. Emergence capacity and emergence time of a seedling are strongly
influenced by its hypocotyl length and the elongation speed [ 35 ]. Based on the knowledge
of AtCIPK23 in ion uptake or transport [ 14 , 15 , 20 , 21 ], NtCIPK23 might promote hypocotyl
elongation and seedling emergence by interfering in cell turgor and cell elongation by
regulating ion absorption or transport.
Thus far, a wide variety of nutrient transporters were characterized to be the regulatory
targets of AtCIPK23, including AKT1, AtHAK5, AtKUP4, AtNRT1.1, AMT1.1, SLAC1,
SLAH3, etc. [ 31 , 36 ]. Through interfering their activity, the kinase regulates plant response
to the absorption or transport of various ions. Its regulatory mechanisms under different
conditions vary, by activation or inactivation, in a Ca 2+ -dependent or -independent manner,
interacting with CBLs or not [ 31 ]. All these factors contribute to the specification of
AtCIPK23 0 s role. Which nutrient transporters might be the targets of NtCIPK23 in tobacco?
Which CBLs are its interacting partners? Are there any diverse functions in tobacco plants?
These questions are far from being answered, and are needed in the future.
AtCIPK23 was found to be highly expressed in cotyledon, leaves, and radicle in Ara-
bidopsis seedlings, but not in hypocotyl [ 15 ], which is different from NtCIPK23. Phenotypic
analysis of atcipk23 also showed that the absence of AtCIPK23 does not significantly af-
fect the hypocotyl elongation and seed germination of A. thaliana [ 15 , 20 ]. All these data
hint that AtCIPK23 might be dispensable during hypocotyl elongation or seedling emer-
gence. Although AtCIPK23 and NtCIPK23 are homologous genes with similar nucleotide
sequences, due to the different expressional level in hypocotyl, the two genes play different
roles in hypocotyl elongation. Therefore, during the functional characterization of homol-
ogous genes, enough attention should be paid to the specific intracellular environments,
including the expression pattern (species, tissue, organ, cell-type, treatment), upstream or
downstream pathways, interactive targets, etc. [ 37 ]. On the basis of these differences, genes
with high homology might have different functions. The knowledge is very useful in the
functional study of an individual gene member from its multigene family, especially when
there is functional redundancy. Meanwhile, it was also clearly shown that conclusions
from model plants, such as A. thaliana, could not represent all conditions in plants, and
different species have their own characteristics.
Different kinds of phytohormone response, anaerobic response, photoreactive, and
stress defense-related elements were found in NtCIPK23 promoter, which strongly suggests
that NtCIPK23 might be regulated by numerous environmental or cellular factors. Consis-
tently with the prediction, GUS staining assay demonstrated that during the short stage of
early seedling growth, obvious expressional changes of NtCIPK23 occurred spatiotempo-
rally. It hinted that NtCIPK23 is probably regulated by a vastly complicated network, in
which the light, phytohormone, and other kinds of factors are involved. The following RT-
qPCR detection also confirmed this prediction, which indicated the regulatory role of light
and dark in NtCIPK23 expression (Figure 5c). As other CIPK23 genes are proved to occupy
a crucial position in nutrition, development, and stress tolerance in plants [ 3 , 4 , 22 , 38 ], the
upstream regulation pathway of NtCIPK23 might be an interesting point to be focused on.

It is worth mentioning that hypocotyl elongation is an important process for the
epigaeous seedlings. It ensures that the cotyledons are unearthed and reach for light in
time [ 39 , 40 ]. All factors involved in this fundamental growth period can directly affect
seedling emergence and uniformity. Currently, the latter is given more attention in intensive
planting and standardized management [ 41 ]. Contributions of NtCIPK23 to hypocotyl
elongation in this study suggested that the gene is of potential agronomic significance in
the improvement of seedling emergence and uniformity, and it is quite necessary to deepen
the knowledge of NtCIPK23 in seed germination and early seedling growth.
4. Materials and Methods
4.1. Plant Materials and Growth Conditions
N. tabacum L. cv. Zhongyan100 (we refer to it simply as ZY100) and other ZY100
materials with different NtCIPK23 expression levels were used in this study. During
germination and GUS histochemical assay, tobacco seeds were sown on two pieces of filter
paper saturated with water, in a culture dish, with vermiculite underlying the filter paper.
For the measurement of hypocotyl length and the cotyledon size of tobacco plants, seeds
were sown on perforated 96-well PCR plates, which were filled with vermiculite, and
saturated with water. Seeds in different treatments were c*ted under constant light at
25
? C
± 1
? C, 60
± 5% relative humidity. For the dark treatment, the seeds were sown on
perforated 96-well PCR plates with vermiculite, saturated with water, and put into boxes
wrapped by aluminum foil.
4.2. Gene Cloning and Plasmid Construction
Based on the BLAST analysis, one sequence of AtCIPK23 0 s homolog (GenBank No.
XM_016594430.1) in N. tabacum was obtained from NCBI website 
nih.gov/Blast.cgi), using AtCIPK23 sequence (At1G30270) as the template. NtCIPK23
sequence was mapped on Ntab-TN90_scaffold36089 in tobacco genome database  The segments of NtCIPK23 CDS and its promoter were
then cloned from ZY100, based on the design of corresponding primer pairs NtCIPK23-
1F/NtCIPK23-1R and NtCIPK23pro-1F/NtCIPK23pro-1R. The CDS segment was used for
generation of overexpression lines. PCR products of NtCIPK23 and its promoter were lig-
ated to pMD19-T to obtain pMD19-T-NtCIPK23 and pMD19-T-ProNtCIPK23, respectively.
To construct the expression vector for subcellular localization, NtCIPK23 segment
was amplified from plasmid pMD19-T-NtCIPK23, using the primer pair NtCIPK23-3F-
NcoI/NtCIPK23-7R-SalI. PCR products were digested with NcoI and SalI, and ligated into
the NcoI/SalI-digested pCambia1300. The plasmid was named as pCambia1300-NtCIPK23-
GFP. To generate the overexpressing vector of NtCIPK23, pMD19-T-NtCIPK23 (reverse
insertion) plasmid was digested by SmaI/SalI, and the released segment was ligated into
SmaI/SalI-digested pCHF3. For the construction of the pBI101-ProNtCIPK23::GUS vector,
the primer pair NtCIPK23pro-2F-HindIII/NtCIPK23pro-2R-BamHI was used. The PCR
product was digested with HindIII and BamHI and cloned into HindIII/BamHI-digested
pBI101 vector.
The potential guide RNA (gRNA) sequence was initially obtained by CRISPR Multi-
Targeterbased on the sequence of NtCIPK23
CDS. The main principles behind the screening of potential gRNA target were that (1)
the binding position of gDNA should be close to the transcription initiation site; (2) the
binding position of gRNA should be within the coding frame; and that (3) the gRNA is
specific to distinguish NtCIPK23 and its homologous genes in ZY100. Based on the analysis
of CRISPR MultiTargeter and the outlined requirements above, a potential primer target
(ATGATGTAGGGAGGACCCTTGGG) was obtained. Before the synthesis of gRNA primer,
(1) NGG was deleted; (2) one G was added, if the 5 0 end was not G; (3) the reverse comple-
mental primer was acquired; and (4) GATT at 5 0 end of forward primer and AAAC at 5 0
end of reverse primer were also added, respectively. The primer pair NtCIPK23CR-1Target-
1F/NtCIPK23CR-1Target-1R of gRNA was obtained. The gRNA expression cassette wasthen inserted into BsaI-HF (NEB company)-digested pORE-Cas9 binary vector to generate
the NtCIPK23-CRISPER/Cas9 vector [42].
The primers used in the experiments are shown in Table S2. All clones derived
from the PCR products were verified by sequencing, and the recombinant plasmids were
confirmed by restriction analyses.
4.3. RNA Extraction, RT-PCR, and Real-Time Quantitative PCR (RT-qPCR) Analyses
To test the expression level of exogenous NtCIPK23, total RNA was extracted from
the leaves of transgenic plants, using a phenol-based method [ 31 ]. cDNA was synthesized
from 1 µ g total RNA for RT-PCR, using the PrimeScriptTM RT kit (TaKaRa Biotechnology
Co., Ltd., Dalian, China). NtL25 is a ribosomal protein gene (Accession No. L18908), widely
used as a common internal control in N. tobacum [ 43 – 45 ]. The primer pairs NtCIPK23-
qF/pCHF3-Allcheck-2 and NtL25-F/NtL25-R were used to detect the expression levels of
exogenous NtCIPK23 and relative quantification in RT-PCR [ 43 ]. The primer pair NtCIPK23-
qF/pCHF3-Allcheck-2 was used to detect the expression levels of exogenous NtCIPK23
in RT-PCR. The pCHF3-Allcheck-2 is a specific reverse primer antisense to the adjacent
sequence, exactly after the multiple cloning sites of transgenic vector pCHF3 (Figure S1).
In RT-PCR, only the transcripts of exogenous NtCIPK23, but not those of endogenous
NtCIPK23, were amplified as the templates. The amplification reactions were performed
in a total volume of 20 µ L, which contained 7.2 µ L ddH 2 O, 0.8 µ L forward and reverse
primers (10 µ M), and 2 µ L cDNA (diluted 10 times after synthesis), 10 µ L 2 × rTaq Mix
(TaKaRa Biotechnology Co., Ltd., Dalian, China). PCR was conducted as follows: 95
? C for
3 min, followed by 30 cycles of 95
? C for 30 s and 55 ? C for 30 s and 72 ? C for 1 min, then
72
? C for 10 min.
To investigate the expressional changes of NtCIPK23 in the hypocotyl, RT-qPCR was
conducted. Total RNA was extracted from the hypocotyl of ZY100 plants treated in the
dark or under light (at 6 DAS). The cDNA synthesis method was the same as the above
process. The SYBR Premix Ex TaqTM (TaKaRa Biotechnology Co., Ltd., Dalian, China) kit
was used for quantitative analysis. Specific primer pairs NtCIPK23-qF/NtCIPK23-qR and
NtL25-F/NtL25-R were used for RT-qPCR and relative quantification, respectively. The
mean values of at least three biological replicates were normalized using the NtL25 gene as
the internal controls [ 45 ] The amplification reactions were performed in a total volume of
20 µ L, which contained 10 µ L 2 × SYBR Premix Ex TaqTM, 7.2 µ L ddH 2 O, 0.8 µ L forward
and reverse primers (10 µ M), and 2 µ L cDNA (diluted 10 times after synthesis). PCR was
conducted as follows: 95
? C for 1 min, followed by 40 cycles of 95 ? C for 10 s and 60 ? C for
34 s. Relative quantitative analysis was performed using the standard curve method, and
the instrument used was Roche LightCycler 96 Instrument (Roche Molecular Systems, Inc.,
Basel, Switzerland). Three biological replicates were included for data quantification. The
primers used in the experiments are shown in Table S2.
4.4. Generation of Transgenic Materials
To generate the NtCIPK23-overexpressing lines and ProNtCIPK23::GUS transgenic
plants, pCHF3-NtCIPK23 vector and pBI101-ProNtCIPK23::GUS vector were transformed
into Agrobacterium tumefaciens EHA105, respectively, and then introduced into N. tabacum
L. cv. Zhongyan100 via the Agrobacterium-mediated method [ 46 ]. Thirty-four NtCIPK23-
overexpressing plants and 16 ProNtCIPK23::GUS transgenic plants were screened out by
genomic PCR and RT-PCR/GUS staining. The seeds (T1 generation) of transgenic lines
were screened on 1/2 MS medium containing 50 µ g/mL kanamycin, and were selectively
propagated for T2 generations to obtain the homozygous lines. Seven independent and
homozygous T2 overexpressing lines with single copy insertion were finally selected,
and 6 lines exhibited similar phenotypes in germination and early seedling growth. Two
lines (T2-OE-15-11 and T2-OE-25-4, referred to as OE15 and OE25, respectively) were
selected for phenotype analysis. As to the ProNtCIPK23::GUS materials, 3 independentand homozygous T2 lines with single copy insertion exhibiting similar expression pattern,
were finally obtained. T2-55-13 was selected for expression analysis of NtCIPK23.
To obtain loss-of-function materials of NtCIPK23, CRISPR/Cas9 system was used for
targeted mutagenesis of NtCIPK23 in ZY100 [ 42 ]. The workflow is shown in Figure S1 .
To generate independent C0 plants, all transgenic seedlings were separated from differ-
ent tobacco calluses (one seedlings-one callus) and transferred to the rooting medium;
52 C0 plants were obtained. Among these plants, 17 C0 plants were confirmed to be
edited via direct sequencing of PCR products, using the specific primer pair NtCIPK23-
1-UTR2F/NtCIPK23-1-145R, which could distinguish NtCIPK23 from other tobacco ho-
mologs. Same PCR products were then cloned into pMD19-T vector, and the gene editing
events were confirmed by the monoclonal sequencing (clone number > 80). The C0 plants,
in which all 80 clones showed the same editing site, were considered to be NtCIPK23-edited
homozygous lines. There were 6 homozygous and 12 heterozygous plants, respectively.
All 6 plants exhibited the same C deletion at the target site, which resulted in a frameshift
at the 5 0 -terminal region of NtCIPK23 transcripts and finally led to translation termination
( Figure S2 ). The seeds of C0 homozygous seedlings (C1 generation) were obtained indi-
vidually by self-pollination, and their editing condition was confirmed again by another
cycle of sequencing (clone number > 80). The 6 C1 lines showed similar developmental
phenotypes, and a typical homozygous line (C1-33#) was designated as the ntcipk23 mutant
and used in the experiments. The primers used in the experiments are shown in Table S2.
4.5. GUS Histochemical Assay
Germination of ProNtCIPK23::GUS seeds occurred within 3 days after sowing (DAS)
(denoted as radicle emergence through the seed coat). Seedlings at different growth
stages, including the micropylar endosperm rupture, radicle emergence and elongation,
hypocotyl elongation, cotyledon emergence and expansion, cotyledon maturation, and
emergence and expansion of the first two leaves, were selected for GUS histochemical
staining. The samples were completely immersed in GUS staining solution (Lot.1127A19,
Beijing Leagene Biotechnology Co., Ltd., Beijing, China) and incubated at 37
? C for 24 h.
Afterwards, the chlorophyll of the samples was completely removed with ethanol for the
microscope observation.
4.6. Subcellular Localization Assay
The pCambia1300-NtCIPK23-GFP plasmid, PM (Plasma membrane) marker pm-rk
CD3-1007 and pGDp19 were transformed into A. tumefaciens EHA105, and were then infil-
trated into leaves of N. benthamiana, as described previously [ 29 ]. Pictures were captured
with confocal microscope (Leica TCP SP8, Leica Microsystems, Germany), 48 h after infil-
tration. The GFP was excited at 488 nm and its emission was captured at 550–590 nm [ 47 ].
The mCherry was detected at 543 nm and its emission was captured at 570–600 nm.
4.7. Measurement and Statistical Analysis
Radicle protrusion was used as an indicator for seed germination. Green cotyledon
percentage was determined to indicate the tobacco post-germination seedling growth.
Generally, the radicle breaks through seed coat within 3 DAS. When the radicle began to
protrude from the testa, the germination percentage was measured (during 2.5~3.5 DAS).
The green cotyledon percentage was calculated when the cotyledon began to turn green
(during 3~5 DAS). To measure the cotyledon size of seedlings, mature cotyledons of the
seedlings at 8 DAS were sampled and placed on 1/2 MS medium, and the images were
taken by an automatic colony counter (Shineso 2.0, Hangzhou Shineso Biotechnology
Co., Ltd., Hangzhou, China). To measure the hypocotyl length, the seedlings at 8 DAS
were taken out of the 96-well PCR plates and washed gently by water, and pictures of
the images were taken. The seedlings required for the measurement of hypocotyl length
in the dark (wrapped by aluminum foil) were sampled at 6 DAS. Each experiment was
independently performed using three biological repeats with three technical replicates.

The number of seedlings for the measurements of green cotyledon percentage, cotyledon
size, and hypocotyl length were about 100 seedlings, 24 cotyledons (from 12 seedlings),
and 20 hypocotyls for each plant materials in one biological repeat. All seedlings were
randomly selected.
Cotyledon area and hypocotyl length were measured by the image processing software
ImageJ . Data obtained by ImageJ were analyzed by one-way
ANOVA using the statistical software SPSS 16.0 and were
demonstrated by OriginPro 9.0 
Supplementary Materials: The following are available online at 
7/10/2/323/s1. Figure S1: The acquisition workflow of the ntcipk23 mutant; Figure S2: Translation
overview of NtCIPK23 CDS from ZY100 and ntcipk23; Figure S3: The GUS staining analysis of
ProNtCIPK23::GUS transgenic tobacco plants during the hypocotyl elongation stage under light
and in the dark; Figure S4: The multiple cloning sites of the over-expressing vector pCHF3 and the
position of the specific primer pCHF3-Allcheck-2; Table S1: The list of cis-acting elements predicted
in NtCIPK23 promoter; and Table S2: Primers used in the experiments.
Author Contributions: Formal analysis, S.S. and L.A.; investigation, S.S., L.A., J.M., and F.X.; method-
ology, S.S., L.A., and Q.W.; resources, S.S. and L.A.; writing-original draft, S.S., L.A., and Q.W.;
validation, J.M.; visualization, J.M. and O.O.A.; writing-review & editing, O.O.A., Z.U., F.X., and G.L.;
conceptualization, H.L. and Q.W.; funding acquisition, H.L. and Q.W.; supervision, H.L. and Q.W.;
project administration, H.L. and Q.W. All authors have read and agreed to the published version of
the manuscript.
Funding: This work was provided by Natural Science Foundation of Shandong Province, China
(ZR2017QC003), International Foundation Tobacco Research Institute of CAAS (IFT202102) and the
Agricultural Science and Technology Innovation Program (ASTIP-TRIC02 and ASTIP-TRIC03).
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: The data presented in this study are available on request from the
corresponding author.
Acknowledgments: We are grateful to Andreas Nebenführ (University of Oklahoma Health Sciences
Center, USA) for kindly providing the plasma membrane marker pm-rk CD3-1007.
Conflicts of Interest: The authors declare no conflict of interest.

 

References
1. Reddy, A.S.N. Calcium: Silver bullet in signaling. Plant Sci. 2001, 160, 381–404. [CrossRef]
2. Batistic, O.; Kudla, J. Integration and channeling of calcium signaling through the CBL calcium sensor/CIPK protein kinase
network. Planta 2004, 219, 915–924. [CrossRef]
3. Weinl, S.; Kudla, J. The CBL-CIPK Ca 2+ -decoding signaling network: Function and perspectives. New Phytol. 2009 , 184,
517–528. [CrossRef]
4. Luan, S. The CBL-CIPK network in plant calcium signaling. Trends Plant Sci. 2009, 14, 37–42. [CrossRef] [PubMed]
5. Mao, J.; Manik, S.M.N.; Shi, S.; Chao, J.; Jin, Y.; Wang, Q.; Liu, H. Mechanisms and physiological roles of the CBL-CIPK networking
system in Arabidopsis thaliana. Genes 2016, 7, 62. [CrossRef] [PubMed]
6. Coello, P.; Hey, S.J.; Halford, N.G. The sucrose non-fermenting-1-related (SnRK) family of protein kinases: Potential for manipula-
tion to improve stress tolerance and increase yield. J. Exp. Bot. 2011, 62, 883–893. [CrossRef] [PubMed]
7. Sánchez-Barrena, M.J.; Martínez-Ripoll, M.; Albert, A. Structural biology of a major signaling network that regulates plant abiotic
stress: The CBL-CIPK mediated pathway. Int. J. Mol. Sci. 2013, 14, 5734–5749. [CrossRef]
8. Xiang, Y.; Huang, Y.; Xiong, L. Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement. Plant
Physiol. 2007, 144, 1416–1428. [CrossRef]
9. Chen, X.; Gu, Z.; Xin, D.; Hao, L.; Liu, C.; Huang, J.; Ma, B.; Zhang, H. Identification and characterization of putative CIPK genes
in maize. J. Genet. Genomics 2011, 38, 77–87. [CrossRef] [PubMed]
10. Sun, T.; Wang, Y.; Wang, M.; Li, T.; Zhou, Y.; Wang, X.; Wei, S.; He, G.; Yang, G. Identification and comprehensive analyses of the
CBL and CIPK gene families in wheat (Triticum aestivum L.). BMC Plant Biol. 2015, 15, 269. [CrossRef]
11. Zhu, K.; Chen, F.; Liu, J.; Chen, X.; Hewezi, T.; Cheng, Z.M. Evolution of an intron-poor cluster of the CIPK gene family and
expression in response to drought stress in soybean. Sci. Rep. 2016, 6, 28225. [CrossRef] [PubMed]

12. Aleman, F.; Nieves-Cordones, M.; Martinez, V.; Rubio, F. Root K + acquisition in plants: The Arabidopsis thaliana model. Plant Cell
Physiol. 2011, 52, 1603–1612. [CrossRef] [PubMed]
13. Li, L.; Kim, B.-G.; Cheong, Y.H.; Pandey, G.K.; Luan, S. A Ca 2+ signaling pathway regulates a K + channel for low-K response in
Arabidopsis. Proc. Natl. Acad. Sci. USA 2006, 103, 12625–12630. [CrossRef]
14. Ragel, P.; Ródenas, R.; García-Martín, E.; Andrés, Z.; Villalta, I.; Nieves-Cordones, M.; Rivero, R.M.; Martínez, V.; Pardo, J.M.;
Quintero, F.J. The CBL-interacting protein kinase CIPK23 regulates HAK5-mediated high-affinity K + uptake in Arabidopsis roots.
Plant Physiol. 2015, 169, 2863–2873.
15. Xu, J.; Li, H.; Chen, L.; Wang, Y.; Liu, L.; He, L.; Wu, W. A protein kinase, interacting with two calcineurin B-like proteins,
regulates K + transporter AKT1 in Arabidopsis. Cell 2006, 125, 1347–1360. [CrossRef]
16. Li, J.; Long, Y.; Qi, G.; Li, J.; Xu, Z.; Wu, W.; Wang, Y. The Os-AKT1 channel is critical for K + uptake in rice roots and is modulated
by the rice CBL1-CIPK23 complex. Plant Cell 2014, 26, 3387–4402. [CrossRef]
17. Cuellar, T.; Pascaud, F.; Verdeil, J.L.; Torregrosa, L.; Adam-Blondon, A.F.; Thibaud, J.B.; Sentenac, H.; Gaillard, I. A grapevine
shaker inward K + channel activated by the calcineurin B-like calcium sensor 1-protein kinase CIPK23 network is expressed in
grape berries under drought stress conditions. Plant J. 2010, 61, 58–69. [CrossRef]
18. Ho, C.H.; Lin, S.H.; Hu, H.C.; Tsay, Y.F. CHL1 functions as a nitrate sensor in plants. Cell 2009 , 138, 1184–1194. [CrossRef] [PubMed]
19. Leran, S.; Edel, K.H.; Pervent, M.; Hashimoto, K.; Corratge-Faillie, C.; Offenborn, J.N.; Tillard, P.; Gojon, A.; Kudla, J.; Lacombe, B.
Nitrate sensing and uptake in Arabidopsis are enhanced by ABI2, a phosphatase inactivated by the stress hormone abscisic acid.
Science Signalling 2015, 8, ra43. [CrossRef]
20. Straub, T.; Ludewig, U.; Neuhäuser, B. The kinase CIPK23 inhibits ammonium transport in Arabidopsis thaliana. Plant Cell 2017 , 29,
409–422. [CrossRef]
21. Shi, S.; Xu, F.; Ge, Y.; Mao, J.; An, L.; Deng, S.; Ullah, Z.; Yuan, X.; Liu, G.; Liu, H.; et al. NH 4 + toxicity, which is mainly determined
by the high NH 4 + /K + ratio, is alleviated by CIPK23 in Arabidopsis. Plants 2020, 9, 501. [CrossRef]
22. Tang, R.J.; Zhao, F.G.; Garcia, V.J.; Kleist, T.J.; Yang, L.; Zhang, H.X.; Luan, S. Tonoplast CBL-CIPK calcium signaling network
regulates magnesium homeostasis in Arabidopsis. Proc. Natl. Acad. Sci. USA 2015, 112, 3134–3139. [CrossRef]
23. Hedrich, R.; Kudla, J. Calcium signaling networks channel plant K + uptake. Cell 2006, 125, 1221–1223. [CrossRef]
24. Negi, J.; Matsuda, O.; Nagasawa, T.; Oba, Y.; Takahashi, H.; Kawai-Yamada, M.; Uchimiya, H.; Hashimoto, M.; Iba, K. CO 2
regulator SLAC1 and its homologues are essential for anion homeostasis in plant cells. Nature 2008, 452, 483–486. [CrossRef]
25. Yan, Y.; He, X.; Hu, W.; Liu, G.; Wang, P.; He, C.; Shi, H. Functional analysis of MeCIPK23 and MeCBL1/9 in cassava defense
response against Xanthomonas axonopodis pv. manihotis. Plant Cell Rep. 2018, 37, 887–900. [CrossRef]
26. Yang, W.; Kong, Z.; Omo-Ikerodah, E.; Xu, W.; Li, Q.; Xue, Y. Calcineurin B-like interacting protein kinase OsCIPK23 functions in
pollination and drought stress responses in rice (Oryza sativa L.). J. Genet. Genom. 2008, 35, 531–543. [CrossRef]
27. Footitt, S.; Olcer-Footitt, H.; Hambidge, A.J.; Finch-Savage, W.E. A laboratory simulation of Arabidopsis seed dormancy cycling
provides new insight into its regulation by clock genes and the dormancy-related genes DOG1, MFT, CIPK23 and PHYA. Plant
Cell Environ. 2017, 40, 1474–1486. [CrossRef] [PubMed]
28. Inoue, S.; Kaiserli, E.; Zhao, X.; Waksman, T.; Takemiya, A.; Okumura, M.; Takahashi, H.; Seki, M.; Shinozaki, K.; Endo, Y.; et al.
CIPK23 regulates blue light-dependent stomatal opening in Arabidopsis thaliana. Plant J. 2020 , 104, 679–692. [CrossRef] [PubMed]
29. Nelson, B.K.; Cai, X.; Nebenfuhr, A. A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and
other plants. Plant J. 2007, 51, 1126–1136. [CrossRef]
30. Batistic, O.; Waadt, R.; Steinhorst, L.; Held, K.; Kudla, J. CBL-mediated targeting of CIPKs facilitates the decoding of calcium
signals emanating from distinct cellular stores. Plant J. 2010, 61, 211–222. [CrossRef] [PubMed]
31. Ródenas, R.; Vert, G. Regulation of root nutrient transporters by CIPK23: “one kinase to rule them all”. Plant Cell Physiol. 2020 ,
pcaa 156. [CrossRef]
32. Wang, P.; Hsu, C.; Du, Y.; Zhu, P.; Zhao, C.; Fu, X.; Zhang, C.; Paez, J.; Macho, A.; Tao, W.; et al. Mapping proteome-wide targets
of protein kinases in plant stress responses. Proc. Natl. Acad. Sci. USA 2020, 117, 3270–3280. [CrossRef]
33. Sadhukhan, A.; Enomoto, T.; Kobayashi, Y.; Watanabe, T.; Iuchi, S.; Kobayashi, M.; Sahoo, L.; Yamamoto, Y.; Koyama, H. Sensitive
to proton rhizotoxicity 1 regulates salt and drought tolerance of Arabidopsis thaliana through transcriptional regulation of CIPK23.
Plant Cell Physiol. 2019, 60, 2113–2126. [CrossRef] [PubMed]
34. Zheng, Y.; Cui, X.; Su, L.; Fang, S.; Chu, J.; Gong, Q.; Yang, J.; Zhu, Z. Jasmonate inhibits COP1 activity to suppress hypocotyl
elongation and promote cotyledon opening in etiolated Arabidopsis seedlings. Plant J. 2017, 90, 1144–1155. [CrossRef]
35. Folta, K.M.; Spalding, E.P. Unexpected roles for cryptochrome 2 and phototropin revealed by high-resolution analysis of blue
light-mediated hypocotyl growth inhibition. Plant J. 2001, 26, 471–478. [CrossRef]
36. Sánchez-Barrena, M.; Chaves-Sanjuan, A.; Raddatz, N.; Mendoza, I.; Cortés, Á.; Gago, F.; González-Rubio, J.; Benavente, J.;
Quintero, F.J.; Pardo, J.M.; et al. Recognition and activation of the plant AKT1 potassium channel by the kinase CIPK23. Plant
Physiol. 2020, 182, 2143–2153. [CrossRef] [PubMed]
37. Butler, J.E.F.; Kadonaga, J.T. The RNA polymerase II core promoter: A key component in the regulation of gene expression. Genes
Dev. 2002, 16, 2583–2592. [CrossRef]
38. Wang, Y.; Chen, Y.F.; Wu, W.H. Potassium and phosphorus transport and signaling in plants. J. Integr. Plant Biol. 2020 . [CrossRef]
39. Gendreau, E.; Jraas, T.; Desnos, T.; Grandjean, O.; Caboche, M.; Höfte, H. Cellular basis of hypocotyl growth in Arabidopsis thaliana.
Plant Physiol. 1997, 114, 295–305. [CrossRef]

40. Zhong, S.; Shi, H.; Xue, C.; Wei, N.; Guo, H.; Deng, X.W. Ethylene-orchestrated circuitry coordinates a seedling’s response to soil
cover and etiolated growth. Proc. Natl. Acad. Sci. USA 2014, 111, 3913–3920. [CrossRef] [PubMed]
41. Forcella, F.; Arnold, R.L.B.; Sanchez, R.; Ghersa, C.M. Modeling seedling emergence. Field Crops Res. 2000 , 67, 123–139. [CrossRef]
42. Gao, J.; Wang, G.; Ma, S.; Xie, X.; Wu, X.; Zhang, X.; Wu, Y.; Zhao, P.; Xia, Q. CRISPR/Cas9-mediated targeted mutagenesis in
Nicotiana tabacum. Plant Mol. Biol. 2015, 87, 99–110. [CrossRef]
43. Schmidt, G.W.; Delaney, S.K. Stable internal reference genes for normalization of real-time RT-PCR in tobacco (Nicotiana tabacum)
during development and abiotic stress. Mol. Genet. Genom. 2010, 283, 233–241. [CrossRef]
44. Wu, M.L.; Cui, Y.C.; Ge, L.; Cui, L.P.; Xu, Z.C.; Zhang, H.Y.; Wang, Z.J.; Zhou, D.; Wu, S.; Chen, L.; et al. NbCycB2 represses Nbwo
activity via a negative feedback loop in tobacco trichome development. J. Exp. Bot. 2020, 71, 1815–1827. [CrossRef]
45. Trolet, A.; Baldrich, P.; Criqui, M.C.; Dubois, M.; Clavel, M.; Meyers, B.C.; Genschik, P. Cell cycle-dependent regulation and
function of ARGONAUTE1 in plants. Plant Cell 2019, 31, 1734–1750. [CrossRef] [PubMed]
46. Horsch, R.; Fry, J.; Hoffmann, N.; Eichholtz, D.; Rogers, S. A simple and general method for transferring genes into plants. Science
1985, 227, 1229.
47. Dong, L.; Wang, Q.; Manik, S.M.N.; Song, Y.; Shi, S.; Su, Y.; Liu, G.; Liu, H. Nicotiana sylvestris calcineurin B-like protein NsylCBL10
enhances salt tolerance in transgenic Arabidopsis. Plant Cell Rep. 2015, 34, 2053–2063. [CrossRef] [PubMed]

杭州迅數科技有限公司
服務熱線:0571-85125132
掃碼關注我們
Copyright © 2025 杭州迅數科技有限公司 版權所有   備案號:浙ICP備06012639號-2 技術支持:化工儀器網   管理登陸   sitemap.xml
chinese老太交granny| 女女百合av大片在线观看免费| 久久久国产精华液| 日产电影一区二区三区| 777奇米影视| 久久久久久人妻无码| 老师下面太紧了想进去一点都难| s货叫大声点c懒烂你的sbxs | 超碰97资源站| 国语自产少妇精品视频| 在线观看电影| 金瓶梅3在线观看| 国产99在线 | 亚洲| 三年中文在线观看免费高清第3季| 黄瓜视频在线观看| 儿媳妇的爱| 国产欧美日韩精品a在线观看| yy影院免费观看电视剧网站| 国产av精品一区二区三区久久 | 斩神之凡尘神域动漫免费观看全集| 非缘勿扰电视剧全集36免费观看 | 对白脏话肉麻粗话视频| 日本一在线中文字幕| 韩国三级中文字幕hd久久精品| 苍老师最经典10部电影 | 又大又紧又粉嫩18p少妇| 乱精品一区字幕二区| 成人国产亚洲精品a区天堂 | 少妇与大狼拘作爱| 推特怎么在国内使用| 14表妺好紧没带套18分钟| 欧美综合缴情五月丁香六月婷| 《无忧渡》电视剧| 窝窝影院在线观看免费播放电视剧| 年轻的儿媳| 妻子的背叛完整版视频| 女的让弄多少次下边才不紧| 理论电影在线观看| 女性私密整形图| 色欲午夜无码久久久久久| 久久av无码精品人妻系列| 日韩精品av一区二区三区| 国产aaaa片在线观看| 欧美肥肥婆另类xxxx000| 无码日本电影一区二区网站| 亚洲国产成人资源在线| xxxx丰满小少妇女高潮| 精品久久久久久久久久中文字幕 | 春雨影院观看免费播放三年电视剧| 乳欲人妻1~6樱花动漫| 无人视频在线观看完整版高清| 国产老肥熟xxxx| 狠狠的干性视频| 狂暴巨兽电影| 姑娘免费观看完整版高清中文| 新婚娇妻被肉记1~7最新章节| 把老师的批日出水了视频 | 免费无码一区二区三区a片| 母亲二免费观看全集| 中文字幕2019年最好看电视剧| 女人下面自熨视频| 被老头玩弄的漂亮人妻| 变态另类视频一区二区三区| 欧美精产国品一区二区区别| 宝宝对准坐下来自己弄的意义 | 小13箩利洗澡无码视频网站免费| 中文人妻无码一区二区三区在线| 专干老熟女视频在线观看| 激情综合色五月丁香六月欧美| 欧美亚洲日韩国产人成在线播放| 成人午夜精品无码区久久| av成人无码999www| 舌尖上的新年| 不甘的人妻hd中字| 免费影视观看网站入口 | 国产老妇伦国产熟女老妇视频 | 国产精品天天看天天做夜夜爽| 海外短视频app| 欧洲精品码一区二区三区| 韩国私人vps| 精品无码中文视频在线观看| 欧美成人小说| 日韩a片无码毛片免费看| 熟女人妻少妇精品视频| 99热最新成人国产精品| 三年成全在线观看大全| good电影在线| 久久精品人妻一区二区蜜桃| 精品无码一区二区三区爱与| 欧美狠狠入鲁的视频777色| 白洁在宾馆被赵振连玩三天| 爱的色放在线播放| 久久久久久亚洲精品中文字幕 | 亚洲精品粉嫩小泬18p| 久久婷婷五月综合97色一本一本| 美腿丝袜视频| 去男朋友宿舍被室友4p| 大地电影资源第二页中文在线观看官网| 夜夜躁日日躁狠狠久久av| 女生正能量网站地址链接| 人妻无码一区二区三区| 爆乳熟妇一区二区三区| 无码人妻一区二区三区精品视频 | 在线观看黄a片免费网站| 东北老熟妇tubesexuhd| chinese性老妇老女人| 日本真人做人爱120分钟| 久久久久97国产精华液好用吗| 赤足惊魂在线观看| 中文字幕无码a片久久东京热喷水 成全我在线观看免费观看 | 欧美金发尤物大战黑人| 国产白嫩美女在线观看| 妈妈的朋友在线| jlzzjlzz全部女高潮| 欧美性猛交ⅹxxx乱大交妖精| 最近在线观看免费完整版高清电影 | 阿凡达讲的是什么故事| 一女被五六个黑人玩坏视频| 成人亚洲区无码偷拍12p| 农村熟妇高潮精品a片| 美国式禁忌完整版1一4| 香蕉视频下载| 息与子五十路孕中文字幕| 丰满少妇69激情啪啪无| 国产一在线精品一区在线观看 | 日本在线视频网站| 欧美成人小说| 女厕偷拍txxxxxxx视频| 婷婷国产成人精品视频| 少女韩国免费观看高清电视剧 | 狠狠色丁香婷婷综合| 日本在线观看| 精品水蜜桃久久久久久久| 樱桃小视频| 波多野结衣种子| yin荡纯肉体育生np男男| 美剧在线观看| 丹麦大白屁股xxxxx| 苍井空在线av播放| 久久国产精品偷任你爽任你a| 我的变态室友(h)三攻一受| 国产成人精品久久综合| 最近最好的中文字幕2019免费| 国内精品久久户外无码| 三个男人躁我一个爽| 日本大片又大又好看的ppt| 三年片免费观看在线观看大全一诺| 国产成人午夜高潮毛片| 糟蹋稚嫩的身体发泄h| 日本丰满bbwbbw| 妻子的背叛1完整版视频观看| 国产伦精品一区二区三区的特点是什么| 白洁性荡生活第90章| 岳帮我囗交吞精| gogogo高清免费完整版下载| 国精品人妻无码一区二区三区软件| 岳打开双腿开始配合交换| 露小内裤奶头白丝jk水手维特| 欧美黑人巨大videos在线| 初尝人妻滑进去了莹莹视频| 美国式禁忌3乱偷| 欧美综合缴情五月丁香六月婷| 夫妻那些事全集免费观看电视剧| 亚洲国产精品久久久久爰色欲| 满清十大酷刑在线观看| 国精产品源xzl仙踪林仙踪| 性欧美视频videos6一9| 女大学生的沙龙室| 自慰被室友看见强行嗯啊男男| 玩弄人妻aa性色少妇| 调教超级yin荡护士h| 国产精品久久777777| 无码熟妇αⅴ人妻又粗又大 | 成人免费网站高清观看素材在线| 一番街的奇迹| 丰满饥渴老女人hd| www婷婷av久久久影片| 无码人妻精品一区二区三区| 亚洲男同志网站| 色与欲影视天天看综合网| 深深的进入美妇紧窄| 国产欧美69视频一区二区| 教室激情(h)| 久久久久久精品国产三级| 国产精品久久久久电影网| 中文字幕观看| 女邻居的大乳中文字幕bd| 爆乳美女午夜福利视频| 三年大片大全免费观看大全| 少妇洁白最刺激的13章| 国精产品一二三区精华液| 奶头被民工吸的又大又黑| 国产偷人妻精品一区| 丰满熟妇乱又伦在线无码视频 | 麻豆精产国品一二三产区风险| 最近高清无吗免费看| 五十度灰2| 无码人妻h动漫| 日韩精品久久久肉伦网站| 亚洲丁香五月天缴情综合| 国产成人精品综合在线观看| 337p粉嫩大胆色噜噜噜 | 亚洲国产sexxxxx在线一区| 中文字幕乱码人妻一区二区三区 | 八戒八戒电影免费观看| 久久热这里只有精品99| 国产麻豆精品一区二区三区| iphone14欧美日韩版本区别| 大地中文在线观看| 高清一区二区三区日本久| 久久精品国产一区二区三区四区| 99久久精品费精品国产一区二区| 很黄的啪啪口述细节| 交换美妇系列| 两个人免费观看视频| free性中国熟女hd| 免费能收黄台的直播app| 三年片在线视频中国| 不忠美剧电影完整版| 亚洲欧洲中文日韩久久av乱码| 日韩精品av一区二区三区| 精品无码av一区二区三区不卡| av无码天堂人妻一区二区三区| 再深点灬舒服灬受不了了app冫| 3个人c我1个人| 边吃奶边添下面好爽| 中国极品少妇videossexhd| 日本不卡一区二区三区| 最近2018在线观看免费高清电视剧 | 三年在线观看免费大全| 4399在线观看视频| 国产性猛交普通话对白| 国产97在线 | 亚洲| 做爰视频试看30分钟| 今天高清视频在线观看| 亚洲最大国产成人综合网站| 国产激情无码一区二区| 三年片免费观看国语电影| 国产亚洲欧美在线观看一区| s货叫大声点c懒烂你的sbxs | 浪货 这么湿 趴好h| 小莹乳液汁水停电了还能用吗| 国产真实伦对白全集| 娇妻互换被高潮了三次| japanesehd熟女熟妇| 日本xnxx| 国内夫妇交换自拍视频| 国模冰莲极品自慰人体| 免费看片的app| 久久久受www免费人成| 风流少妇a片一区二区蜜桃| 精品无码成人片一区二区98 | 白洁少妇之大肉吊狂暴视频| √天堂8资源中文在线| 波多野结衣无码av在线| 婷婷成人基地| 狠狠色丁香婷婷综合久久97| 少妇被爽到高潮喷水| 欧美另类粗暴analvideos| 高辣h文乱乳h文| 处破女轻点疼丨98分钟| japanrcep老熟妇乱子伦视频| 《表妹》完整版免费观看| 亚州少妇无套内射激情视频| 上课别穿内裤我方便要你| 办公室秘书无码激情av| 青柠在线视频| 天堂а√在线中文在线最新版 | 亚洲国产精品+制服丝袜| 扒开腿挺进肉嫩小泬电影动漫| 日本xxxx69hd老师学生| 日本大尺度做爰呻吟| 性按摩xxxx在线观看| 日本无码欧美激情视频二区| 亚洲人成色777777精品音频| 欧美 日韩 国产 亚洲 色| 与动人物姣配xxxx| 三年片免费观看在线观看大全一诺| a国产一区二区免费入口| 欧美性白人极品hd| 陈情令免费观看全集| 日本人妻巨大乳挤奶水app| 补课老师肉h短篇| 被公侵犯中文字幕| 色偷偷色噜噜狠狠网站30根| 日本欧美大码一区二区免费看| 成人毛片18女人毛片免费看| 欧美日韩国产一区二区三区不卡| 勒热夫战役电影在线观看完整版| 狠狠亚洲婷婷综合色香五月加勒比 | 国产无av码在线观看| 午夜理论片yy8860y影院| 女人被舔高潮全过| 亚洲综合色自拍一区| 5个男人躁我一个爽免费漫画| 灭火宝贝2法版免费法国| 六姊妹电视剧免费观看完整版高清国语| 不许穿内裤随时挨c| 999精产国品一二三产区区别| 久久精品国产精品亚洲色婷婷| 肥胖bbwwbbww高潮| 成人视频在线观看| 老熟妇高潮一区二区三区| 鲁丝一区二区三区免费| 精品亚洲国产成av人片传媒| 我帮妺妺洗澡忍不住c了她| 日本sparksparkling调| 边做边呻吟边做边爱视频| 亚洲日本一区二区三区在线| 中文字幕日本六区小电影| 电影蜜桃成熟时| 免费看男女做爰爽爽视频| 中国在线观看免费高清完整版| 《朋友夫妇:交换》4中文字幕| 一边摸一边叫床一边爽| 三年中文免费视频大全| 天美传媒精品麻豆| 三年片在线观看免费观看高清动漫| 红杏久久av人妻一区| 最近中文字幕免费完整版| 日本少妇毛茸茸高潮| av无码av天天av天天爽| 一天不日就痒痒| 凹凸久久人人澡超碰凹凸 | 宝贝趴好我从后面弄爽你视频| 欢乐喜剧人第七季| 中国老熟妇xxxxx| 成熟女人毛片www免费版在线 | 成人无码精品一区二区三区| 国内精品久久| 亚洲日韩精品无码av海量| 诱人的年轻少妇| 国产成人精品a视频免费福利| 熟妇少妇任你躁在线无码| 国产大屁股视频免费区| 亚洲中文字幕无码av在线| xboxseriess日本| 伦理片电影在线观看| 亚洲伊人成无码综合网| 樱桃视频大全免费观看| 国产成人a亚洲精品无码青草| 中文字幕丰满乱子伦无码专区| 错一题下面查一支笔啊哈| 熟女人妻少妇精品视频| 麻豆网神马久久人鬼片| 亚洲精品乱码久久久久久日本蜜臀 | 深夜福利久久草草aa啪啪| 国产嫖妓一区二区三区av视频| 亚洲精品自在在线观看| 白洁高义小说全文免费笔趣阁阅读| 国产欧美亚洲精品a第一页| 飘雪影院高清电影电视剧在线观看| 狠狠色丁香婷婷综合久久97| 小草影院在线观看| 单身男女韩剧免费观看| 女人腿张开让男人桶爽| 久久天天躁狠狠躁夜夜| 公公的淫之手| 亚洲国产精品久久电影欧美| 久久这里只有精品18| 亚洲成av人片不卡无码| 久久精品中文字幕第一页| 一个人看的日本www| 朋友的妈妈 双字id| 最近2018在线观看免费高清电视剧 | 成人一区二区免费视频| 无码欧美熟妇人妻影院欧美潘金莲| 国产欧美久久一区二区| 日韩精品内射视频免费观看| 无套内谢少妇毛片a片小说 | 久久精品国产99久久丝袜| 卧室征服朋友人妻| 色狠狠色狠狠综合天天| 欧美人与动牲交欧美精品| 亚洲 另类 日韩 制服 无码| 亚洲乱亚洲乱妇无码| 国产老师色诱我好爽在线观看| 日本一欧美一欧美一亚洲| 500篇艳妇短篇合午夜人屠| 国产精品久久日日苍井空| 诱人的大乳奶3做爰| 偷国产乱人伦偷精品视频| 免费观看又色又爽又黄的软件| 色欲狠狠躁天天躁无码中文字幕| 啊轻点灬大ji巴太粗太| 海上繁花全集46集免费观看| 欧美free性xxoohd| 少妇乱子伦精品无码专区| 刺客伍六七第五季免费观看完整版 | 高清不卡一区二区三区 | 国产老师色诱我好爽在线观看| 最近高清中文在线字幕在线观看 | 蜜桃视频网站在线观看| 星空影院免费观看电影| 国产爆乳无码一区二区麻豆| 真人二十三式性视频(动)| www亚洲精品少妇裸乳一区二区| 语文课代表哭着说不能再深了| 中国农村真实bbwbbwbbw| 把她抵在试衣间疯狂律动| 男ji大巴进入女人的视频| 色欲午夜无码久久久久久| 中文字幕精品无码亚洲字精舞| 丁香色欲久久久久久综合网| 淑芬又痒了把腿张开| 天美传媒麻豆tm0034| 亚洲欧美一区二区三区| 无码人妻丰满熟妇区五十路下载| 三三影院理伦片| 中国少妇videos露脸hd| 性xxxx18免费观看视频| 3d动漫精品啪啪一区二区| 家有一老电视剧全集免费观看| 国产成人亚洲综合网站小说 | 性色做爰片在线观看ww| 国产69精品久久久久999小说| 中文字幕人妻一区二区三区熟女| 日韩人妻系列无码专区| 一本一道久久综合狠狠躁| 亚洲精品亚洲人成在线 | 国模无码大尺度一区二区三区| 韩剧隐藏的面孔在线观看| 无码人妻一区二区三区免费视频| 亚洲精品乱码久久久久久久久久久久| 国产精品自在欧美一区| 高辣h文乱乳h文| 久久精品国产99国产精2018| 久久天天躁夜夜躁狠狠| 亚洲夂夂婷婷色拍ww47| 人人爽人人爽人人片av| 国精品无码一区二区三区左线| 成全二人世界高清免费| 蜜臀av人妻久久无码精品麻豆 | 蜜臀av色欲av| 三年在线观看免费大全| 无套内谢的新婚少妇国语播放| 国精产品一区二区三区的特点 | 极品少妇被弄得高潮不断| 舌头伸进去添的我爽高潮| 蜜桃视频app下载直播| 漫漫漫画免费版在线阅读| 久久久久免费毛a片免费一瓶梅| 欧亚蜜桃一区二区三区| 日韩精品一区| 满肚子浓精涨走路调教| 美女黄网站视频免费视频软件| 日韩a片无码毛片免费看| 欧美私人家庭影院| 久久爽狠狠添av激情五月| 成人免费网站高清观看素材在线| 我把护士日出了白浆| 8090福利成人午夜精品av| 客厅引诱亲女乱尝h| 男人呻吟双腿大开男男h| 精东影视传媒mv国产剧能看不| 国产成人精品男人的天堂| 天天做夜夜躁狠狠躁视频| 永久免费全网黄金网站| 开心激情站| 波多野结衣办公室性xxx| 色哟哟免费精品网站入口| 色哟哟免费精品网站入口| 国产又黄又爽又猛免费视频播放| 学长别揉了我快尿了男男| 黄桃av无码免费一区二区三区| 国产色视频一区二区三区qq号 | metart| 人妻在厨房被色诱 中文字幕| 美国式禁忌完整版1一4| 欧美一区二区三区久久综| 杨幂不雅视频| 东北少妇大叫高潮xxxⅹ传媒| 成人无码一区二区三区免费网站| 在线香蕉精品视频| 中文字幕一区二区三区.| 被灌满精子的五个女校花| 救了一万次的你| yin荡的老师系列第6部分| 国内大量揄拍少妇视频| 色资源av中文无码先锋| 久久精品人人人人人人| 三年片在线观看免费观看大全一 | 少妇荡乳情欲办公室456视频| 欧美重囗味sm群虐视频| 白洁新婚之夜第一章| 欧美一区二区三区成人久久片| 日本特黄特黄刺激大片| 久久久久久久久久久久久久| 黑人玩弄出轨人妻松雪| 好紧好爽要喷了免费影院| 免费观看男女做爰视频| 疯狂撞击丝袜人妻| 国产真实乱人偷精品人妻 | 99精品一区二区三区无码吞精| 999国产精品999久久久久久| 欧美熟妇xxxxx欧美老妇不卡| 少妇高潮a片无套内谢麻豆传| 粉嫩merna人体丰满欣欣赏| 波多野结衣全集| 99爱在线精品免费观看| 伊人久久大香线蕉av一区美国 | 久久天天躁狠狠躁夜夜| 大波姐姐免费观看高清电视剧韩剧| 国模杨依粉嫩蝴蝶150p| 国产精品后入内射日本在线观看| 国产成人精品a视频| 绝伦の上司に一晚人妻| (丰满的女邻居)三级| 免费看男女做爰爽爽视频| 国产爆乳无码视频在线观看3| 成人做爰黄aaa片免费看少妃| 国产精品美女久久久久av超清| 中文字幕无码av激情不卡| 闺蜜张开腿让我爽了一夜| 妖精漫画免费浏览入口| 夜夜躁爽日日躁狠狠躁视频| 国产亚洲欧美精品永久| 西西人体大胆4444www| 精品乱久久| 乱码卡一卡二新区网站| 男人爱看的网站| www夜片内射视频日韩精品成人| 国产综合久久久久| 葫芦娃在线观看| 国产乱人对白| 国产色欲av一区二区三区| 99久久免费精品国产色夜| 欧美日韩精品一区二区三区在线 | 丝袜老师你夹得好紧好爽| 三年片免费观看国语那年我们高清| 777米奇影视| 搡bbb搡bbbb搡bbbb| 一本大道熟女人妻中文字幕在线 | 九九视频在线观看视频6| 色情www.556在线观看| 东京爱情动作故事| 熟女俱乐部五十路二区av| 亚洲人成亚洲精品| 伦理电影在线看| 看着娇妻被肉到高潮| 亚洲人成网站18禁止无码| 亚洲2022国产成人精品无码区| 各处沟厕大尺度偷拍女厕嘘嘘| 在线观看视频| 大地资源二在线观看免费版电视剧| 日本va欧美va欧美va精品| 亚洲欧美熟妇综合久久久久久| 色喜国模私密浓毛私拍人体图片| 妺妺窝人体色www看人体| 三年片免费观看| 狠狠躁夜夜躁av网站色| 忘忧草影院在线观看| 绝世千金第三季免费观看全集完整版| 一路向西在线| 搡8o老女人老妇人老熟| 中文无码一区二区不卡αv| 色婷婷av久久久久久久| ass白俄罗斯大肥妇pics| 性生交大片免费看2| 欧美激情精品久久久久久| 欧美成人精品高清视频在线观看| 日本人牲交bbbxxxx| 无码无套少妇毛多18p| 真人囗交视频| 一女三男做2爱a片免费| 国产伦精品一区二区三区免.费| freexxx性乌克兰xxx| 少妇高潮久久久久久精品一| 国产精品香港三级国产av| 欧洲美女黑人粗性暴交视频| 丰满少妇xxxxx| 无码人妻一区二区三区色欲av| 2012免费高清完整版在线播放| 高清中文字幕| 男阳茎进女阳道全过程在线观看| 三年片免费完整观看| 国产欧美一区二区三区| 18+视频| 空房子在线观看| av网站在线观看| 香港三级日本三级韩国三级| 年轻丰满的继牳4伦理| 扒开腿挺进肉蒂抽搐喷潮视频| 日本国产一区二区三区在线观看| 久久棈精品久久久久久噜噜| 一生一世电视剧免费观看完整版| 国产免费人做人爱| 亚洲天然素人无码专区| 欧美性猛交xxxx乱大交3| 熟妇搡bbbb搡bbbb泰国| 奶奶再爱我一次电视剧| 一边做爰一边吃奶头描述| 好大好湿好硬顶到了好爽| 中文字幕精品亚洲一区| 国产精品18久久久久久不卡| 色综亚洲国产vv在线观看| 狠狠躁夜夜躁人爽碰88a| 多毛bgmbgmbgm胖在线| 亚洲精品无码永久中文字幕| 男人放进女人阳道视频观看| 厨房春潮她含她的乳第一章| 国产suv精品一区二区五| 亚洲欧美自偷自拍另类小说| 人妻无码中文专区久久app| 日本被黑人强伦姧人妻完整版| 欧美+日韩+中文字幕| 久久久精品人妻一区二区三区四| 久久久免费精品国产色夜| 五月天激情国产综合婷婷婷| eeuss影院www在线观看免费| 女生迈开腿让男生打扑克| 欧美老熟妇乱大交xxxxx| 久久久国产一区二区三区| 在线观看国产一区二区三区| 婷婷五色天| 日韩毛片人妻久久蜜桃传媒| 亚洲欧美一区二区三区孕妇写真| 《无忧渡》电视剧| 99精品福利国产在线导航| 给我看免费高清在线观看| 《不忠》大尺度视频| 黑人与人妻出轨系列| 久久精品国产一区二区三| 性生交大片免费看2| 桃花视频免费观看完整版高清全文| 国产亚洲精品久久777777美腿 | 82岁老人找20多岁小伙子| 欧美性色黄大片手机版| 人妻中文字幕无码系列| 杨思敏版金梅瓶1一5集播放| 少妇无码一区二区三区| 18+视频| 7w7w77777的中文意思| 和漂亮岳做爰2| 三年成全免费高清观看第4季| 精品无码成人片一区二区| 成人国产亚洲精品a区天堂| 久久青青草原精品国产| 少女与战车最终章| 14表妺好紧没带套18分钟| 桃花视频免费观看完整版高清全文| 国产亚洲精品久久久久四川人| 国产大屁股视频免费区| 被老头玩弄邻居人妻中文字幕| 亚洲精品美女久久久久久久| 禁忌:禁止的爱| 放荡黄高辣h文np| 新chinese无套小帅ktv| 成人性做爰片免费视频| 《年轻护士3》在线观看| 明星大侦探第二季| 女人被狂躁g点高潮喷水| 国内精品久久久久精品| 张怕芝的毛又多又密| 麻豆产国品一二三产品区别| 久久精品国产69国产精品亚洲| 成人毛片100部免费看| 成人精品一区二区三区中文字幕| 国产美女在线精品免费观看网址| 办公室撕开奶罩揉吮奶漫画| 夜色暗涌时电视剧免费观看全集| 色戒钟丽缇| 九九线精品视频在线观看视频| 大地资源二中文在线观看高清| 成人一区二区免费视频| 性色av极品无码专区亚洲| 欧美老妇与禽交| 俄罗斯女人下面又紧又爽| 麻豆av传媒蜜桃天美传媒| 人人妻人人爽人人澡av| 八戒看免费高清电影在线观看| good在线观看| 亚洲va中文字幕无码2020| 少妇大叫好爽受不了午夜视频| 风车动漫p| www.17c久久久嫩草| 亚洲经典千人经典日产| 把腿张开看老子臊烂你免费| 中文字幕精品一区二区精品| 叫神马影院| 国产精品成人va在线观看| 特黄特色大片免费播放| 蜜臀av一区二区| 岳的大肥坹视频hd| 公交车侵犯小男生肉(h)| 德国老妇激情性xxxx| csgo高清大片大全免费观看| 亚洲乱码精品久久久久..| 伦理片在线观看| 亚洲人成电影在线观看天堂色| 神马影院电视剧免费观看| 少妇把腿扒开让我舔18| 性按摩xxxxx| 欧美精品大香伊蕉在人线 | 我推的孩子动漫在线观看| 与子敌伦刺激对白播放| 欧美艳星nikki激情办公室| 蜜桃av成人午夜视频| 虎牙直播平台在线观看| 国产国产乱老熟女视频网站97| 为什么日本片好看| 欧美xxxxx精品| 国产欧美日韩精品a在线观看| 国产欧美一区二区三区| 欧洲熟妇色| 欧美熟妇hairy高潮hd| 朝鲜女人大白屁股ass孕交| 大地网视频高清在线观看| 夜夜躁狠狠躁日日躁xxoo| 绝伦の上司に一晚人妻| 成人欧美尽粗二区三区av| 被老头疯狂灌浆怀孕小说| 久久中文字幕无码专区| 在线天堂中文在线资源网| 《隔壁女邻居3》中文| yy影院免费观看电视剧网站| 精品人妻少妇嫩草一区二区无码| 沧元图第二季在线观看全集免费高清| 72式插杆电影免费播放| 午夜抽搐一进一出| 日本少妇做爰全过程毛片| 性xxxx欧美老妇506070| 肉肉写得很细致的床戏| 浪货 这么湿 趴好h| 久久av色欲av久久蜜桃麻豆| 国产精品久久久久久久精品乱码| 国产亚洲欧美日韩俺去了| 精品久久久无码中文字幕| 国产乱妇乱子在线播视频播放网站| bt天堂在线www资源种子搜索| gogogo免费高清日本tv| 大码hiphop欧美胖mm短袖| japanese精品少妇| 入禽太深免费视频| 中文字幕人成人乱码亚洲电影| 苍老师最经典10部电影 | 年轻的母亲4| 色婷婷激情av精品影院| 亚洲久热中文字幕在线| 2018午夜福利| 国产精品嫩草久久久久| 国产精品美女久久久m| 黑人啊灬啊灬啊灬快灬深| xxxx内射中国老妇| 国产福利在线永久视频| 艳妇臀荡警察乳欲伦交换| 精品无码人妻一区二区三区18| jαpαnesehd熟女熟妇伦| 大内密探零零性| 波多野结衣中文字幕一区二区三区| 免费看男阳茎进女阳道试看| 精品亚洲国产一区二区| 国产一区二区三区美女| 成全视频免费观看在线看| 国产又色又爽又黄又刺激视频国语| 欧美一区二区三区久久精品大富翁 | √8天堂资源地址中文在线| 在线观看mv免费视频网站 | 欧洲美熟女乱又伦av影片| 性按摩xxxxx| 富江无限制| 成人性生交大片免费| 诱人的大乳奶3做爰| 陈翔六点半之铁头无敌| 欧美激情第1页| 最近免费中文字幕大全高清| 宝让我吃你的小扇贝| 亚洲 另类 在线 欧美 制服| 日本人妻丰满熟妇久久久久久| 久久99精品国产.久久久久| 欧美性猛交久久久乱大交av| 丰满熟女人妻一区二区三| 亚洲va无码va在线va天堂| h文肉体暴力强伦轩| 台湾中文娱乐| 无风险9.1免费版安装动漫| 激情人妻另类人妻伦| 香蕉久久久久久av成人| 粗大的内捧猛烈进出的视频| 中文字幕在线中文乱码怎么解决| 苍井空50分钟无码| 中文字幕aⅴ人妻一区二区| 久久99国产精品久久99果冻传媒| 妺妺窝人体色www在线观看| 色大妈综合网| japanese日本熟妇| 韩剧隐藏的面孔在线观看| 舞蹈区卖肉精选| 男人日女人| 男男车车的车车网站w98免费| 国内精品久久久久影视老司机| 精品人妻一区二区三区| 98直播吧篮球录像回放| 一区二区三区高清视频一| 99久久免费看精品国产一区 | 亚洲深深色噜噜狠狠网站| 漂亮人妻洗澡被公强| 骚老师av| 国产一区二区三区无码免费| 狠狠躁天天躁无码中文字幕| 苏软软的淫辱日常h| 被黑人玩得站不起来| 国产成人av| 教室停电 挺进她体内h| 精品一区二区三区免费毛片爱| 欧一美一色一伦一a片| 97人妻人人揉人人澡人人学生| 亚洲一区二区三区自拍公司 | 三三影院免费观看电视剧网站| 多p混交群体交乱嗯啊小说| 在线精品视频一区二区三区| 小雪被老外黑人撑破了视频| 黑人50厘米全部进去| 欧美肥妇多毛bbw| 西瓜视频免费观看| (高h)艳妇诱春| 小秘书太紧了h| 丰满少妇弄高潮了www| 97国产精品久久碰碰| 亚洲不卡av一区二区三区| 日本少女漫画| 亚洲国产精品久久久久秋霞影院| 少妇被粗大的猛烈进出免费视频| 男生和女生一起干的一些事| 无码亚洲一本aa午夜在线观看| 男人女人视频| 电影在线观看免费版高清| 欧美巨鞭大战丰满少妇| 日本熟妇xxxx| gogogo国语版免费播放| 三年片免费观看大全有哪些| 少妇扒开粉嫩小泬视频| 免费国精产品—品二品| 高h调教文| 久久久国产打桩机| 爱的理想生活电视剧免费观看| 女人下面又黑又大| 大地资源高清在线视频播放| 亚洲精品久久久久中文字幕| 女人流白浆和喷水哪种是高潮| 亚洲综合另类小说色区| 九九re6热在线视频精品66| 人与善性猛交xxxx| gogogo电影免费观看| 野外亲子乱子伦视频丶| 《芈月传》| 掀开奶罩狠狠边躁狠狠躁视频| 综合人妻久久一区二区精品| 久久综合色一综合色88欧美| 国产精品熟女高潮视频| 国产视频在线观看| 国产乱码字幕精品高清av| 性瘾调教(h)| 国产成年无码久久久久毛片| 亚洲精品国产一区二区在线观看| 西西大胆人胆全棵艺术照| 《偷妻》未删减版| 男阳茎进女阳道视频观看| 夜夜澡人摸人人添人人看| 草莓视频app无限观看| 日本亚洲欧洲无免费码在线| 国产亚洲精品aaaa片小说| 电影误杀3免费播放观看| 无码一区二区三区亚洲人妻 | 聊斋艳潭在线观看| 亚洲s码欧洲m码国产av| 88国产精品视频一区二区三区| 性中国熟妇videofreesex| 四虎国产精品永久在线无码| 国产顶级熟妇高潮xxxxx | 制服 中文 人妻 字幕| 久久久久久毛片免费播放| 精品人体无码一区二区三区| 色噜噜狠狠狠狠色综合久一 | 蜜臀av在线播放一区二区三区| csgo高清大片大全免费观看| 777奇米| 女大学生的沙龙室| 晚上睡不着偷偷看b站| 被公疯狂玩弄的年轻人妻| 狂飙电视剧免费观看完整版高清| 欧美精品videosex极品| 国模生殖欣赏337metcn| xl司令第二季无马赛第八集 | 妻子6免费完整高清电视| 欧美性大战久久久久xxx| 韩国三级大全中文字幕999| 性欧美xxxxx老少交| 69日本人xxxx16-18| japan少妇洗澡videos| 人妻丰满熟妇av无码区乱| 人妻体体内射精一区二区| 国产无av码在线观看| 久久久久蜜桃精品成人片| 啊灬嗯灬啊灬用力点少妇视频| 变态抽搐顶弄h| 小祖宗┅┅快┅┅用力啊视频 | 国产精品久久久久aaaa| 亚洲日韩一区精品射精| 女女啪啪激烈高潮喷出网站| 餐桌下狂c亲女高辣h文| 久久人人爽爽爽人久久久| 欧美激情精品久久久久久| 荫道添到高潮a片| 国产午夜精品无码| 极品尤物一区二区三区| 含着jing液去上课h| 国产乱国产乱老熟300部| 国产精品交换| 少女免费的高清动画| 大地二资源在线高清免费播放| 人妻无码一区二区三区av| 国产六月婷婷爱在线观看| 天天想你在线播放免费观看| av人摸人人人澡人人超碰导航| 影音先锋2020色资源网 | 肥臀熟女一区二区三区| 国产精品毛片无遮挡| 黄桃av无码免费一区二区三区| 人善交videos欧美| 国精品无码一区二区三区在线蜜臀| 成人午夜福利视频| 《年轻护士3》在线观看| 久久久久久久久久久久| 朋友的丰满人妻hd| 98直播吧篮球录像回放| 亚洲成a人v欧美综合天堂麻豆| 千星传说泰剧在线观看免费| 9i制作厂麻花| 永久域名18勿进永久域名| 国产成人亚洲综合| 无码任你躁久久久久久久| 伊人久久大香线蕉av影院| 无码少妇精品一区二区免费动态| 他扯掉她的内裤猛地挺进她| 性欧美巨大乳| 天天搡天天狠天干天啪啪| 久久精品无码av| 张雨欣人文艺术欣赏ppt| 野花香电视剧全集免费观看| 床戏高潮做进去大尺度视频| 亲爱的热爱的| 把老师的批日出水了视频| 乖灬舒服灬别拔出来灬| 亚洲精品国产成人| 日本电视剧免费观看电视剧高清版| 成人亚洲性情网站www在线观看| 无码综合天天久久综合网| 美女极度色诱视aaaaaa| 强摸秘书人妻大乳bd| 97人人爽人人爽人人人片av | 蜜桃人妻无码av天堂三区| 五月婷婷开心中文字幕| 欧美人妻一区二区三区| 午夜时刻免费入口| 性生交大全免费看| 丰满人妻被公侵犯日本| 亚洲欧美色中文字幕在线| 久久婷婷色综合一区二区| 无码h黄肉3d动漫在线观看| 亚洲国产综合精品一区| 《肉欲狂潮》无删减在线观看| 人妻丰满熟妇av无码区hd| 亚洲精品在线| 亚洲一区二区三区小说| 国产绿帽男献娇妻视频| 四虎国产精品永久免费网址| 影视先锋av资源噜噜| 免费网站看v片在线18禁无码| 国产精品无码av在线播放| 神马三级我不卡| 国产午夜精品一区理论片飘花| 制服丝袜人妻中文字幕在线 | 亚洲人成网站在线在线观看| 国产农村乱对白刺激视频| 大叫受不了了好爽国产| 国内精品九九久久精品| 国产香蕉视频在线播放| 人妻互换共享4p闺蜜疯狂互换| 无码人妻少妇久久中文字幕| 无码视频在线观看| 精品人妻人人做人人爽| 精品国产污污免费网站入口| 人妻体内射精一区二区| 杂乱小说2第400部| 十七岁高清完整版在线观看免费| 亚洲人成网线在线播放va| 女人高潮潮呻吟喷水到几根| 陈情令免费观看全集| 熊出没之夺宝熊兵| 亚洲第一网站男人都懂| 你是我的女人中文字幕高清| 国产精品va无码一区二区| 国产精品亚洲专区无码唯爱网| 免费国精产品自偷自偷免费看| 国产大片免费观看软件| 第一次互换人妻| 啊灬啊灬啊快日出水了| 国产精品亲子乱子伦xxxx裸| 日产久久视频| a片毛片免费看| 久久久久久久精品成人热小说| 亚洲精品久久久久久下一站| 亚洲一区二区自偷自拍另类| 扒开腿挺进肉嫩小泬电影动漫| 欧美成人免费全部| 女教师日记2| 午夜成人影院| 公司领导要了我好几次| 久久久久久亚洲精品成人| cekc妇女毛多啊bn| 欧美freesex黑人又粗又大 | 菠萝蜜在线观看电视剧全集| 少妇无码自慰毛片久久久久久| 亚洲国产精品成人天堂| 女教师被内谢流白浆| 日本狂喷奶水在线播放212| 蜜臀久久精品久久久久酒店| 百变大咖秀第三季| 极品熟妇大蝴蝶20p| 被部长灌醉后强行侵犯| 德国毛茸茸| 亚洲欧洲成人av每日更新| 免费直播视频在线观看| 国产色视频一区二区三区| 精品无码一区在线观看| 色狠狠一区二区三区香蕉| 啊┅┅快┅┅用力啊岳| 日韩成人无码一区二区三区| 国产精品久久久久久久久久久久午夜片| 日本电影厨房激情2| 高潮久久久久久久久不卡| 在线观看国产三级视频| 亚洲va无码va在线va天堂| 老牛暴躁少女免费播放电视剧全集| 丁香色婷婷国产精品视频| 领导征服下属新婚人妻| 十九岁暴躁少女csgo| gogogo免费高清在线中国| 暴躁老姐的csgo| 妈妈的朋友4在线观看| 亚洲国产精品高清在线第1页| 精品bbwbbwbbwbbw| 日产精品久久久一区二区| 日本老熟妇毛茸茸| 国产精品人妻无码久久久豆腐| 真人做爰高潮全过视频| 三攻一受4p肉调教| 99精品国产一区二区| 最近免费观看在线中文2019| 四虎成人精品无码永久在线| 国产乱妇无码大黄aa片| 国产乱色国产精品播放视频| 国产偷抇久久精品a片69| 人妻无码av久久一二三区| 超薄丝袜足j好爽在线| 国产欧美一区二区三区| 国产av一区二区三区最新精品| 美梦视频大全免费观看| 欧美贵妇videos办公室| 一个人在线观看www| 国产精品毛片一区二区| 成全视频免费高清观看在线| 大提琴与点三八| 京东app下载安装官网免费下载| 亚洲欧美自偷自拍另类小说| 《年轻女教师4》免费观看| 熟妇中国 @tube umtv| 妺妺窝人体色www婷婷| 国产色无码精品视频免费| 久久久久久久97| 强摸秘书人妻大乳bd| chinese国产av| 精品人妻av无码一区二区三区| 老子就是要你怀孕abo| 玉蒲团全集| 四虎国产精品免费久久久| 国产自在自线午夜精品之la| 暴躁老妈50大作战中配攻略 | 久久人妻熟女一区二区| 亚洲一区二区三区高清在线观看| 欧美日韩中文国产一区发布| eeuss影院www在线观看免费| 后妈的春天| 欲望都市电影| by59777·coon域名查询| 亚洲精品一区二区三区蜜臀| 办公室动漫第一季| 欧美多人片高潮野外做片黑人| 国产尤物精品视频| 全部免费毛片在线播放| 性一交一乱一交一久怎么形容| 98在线高清免费观看电视剧狂飙| 天美传媒麻豆mdxxxx| 青青河边草免费观看电视剧| japanese日本熟妇| av成人无码999www| gogogo免费完整国语版| 真实国产老熟女粗口对白| 国产肉体xxxx裸体137大胆| 天堂中文在线| 被黑人猛烈30分钟视频| 国内精品久久久久精品综合紧身裙 | 变态另类一区二区sm| 天天摸夜夜添夜夜无码| 欧美日韩精品一区二区三区在线 | xbox高清视频学生| 丰满的继牳伦理| 欧美 日韩 国产 亚洲 色| 无码人妻精品一二三区免费| 全部裸体做爰大片免费看网站| 无码播放一区二区三区| 狠狠躁夜夜躁人人爽爱东京热av| 《丰满的女邻居》播放| 51久久成人国产精品麻豆| 亚洲色大成网站www永久| 精品人妻少妇嫩草av无码专区| 69丰满少妇av无码区| 张行长在她体内越来越快| 妻子的秘密免费版电视剧| 熟妇的荡欲色综合亚洲| 国精产品一品二品国精| 无码精品一区二区三区四区爱奇艺| 国产欧美日韩综合精品二区| 欧美性猛片aaaaaaa做受| 成人区色情综合小说| 大色综合色综合网站| 久久亚洲国产精品五月天婷| 胸部隐隐约约的疼怎么回事| 免费视频欧美无人区码| 01章老头挺进娇妻体内| 一本一道av无码中文字幕麻豆 | 亚洲国产精久久久久久久| 亚洲欧美成人一区二区在线电影| 国产精品久久久久无码av | 双性精跪趴灌满h室友| 亚洲熟女乱色综合亚洲图片| 爱丫爱丫影院电视剧免费播放| av无码网址| 校花被强糟蹋十八禁免费视频| 国产精品 人妻互换| 国产精品一区二区久久精品 | 嘘禁止想象完整版| 51精品国自产在线| xxxxx性女hd性爽| 聊斋之艳蛇| 国产乱色国产精品播放视频| 欧美乱妇日本无乱码特黄大片| 性88分钟| 公妇借种乱h日出水了| 国产农村妇女毛片精品久久| 强行无套内谢大学生初次| 花火视频影视大全免费观看| 客厅享受丝袜人妻张雅婷| 久久人妻少妇嫩草av蜜桃麻豆| 亚洲色欲色欲www| 三个黑人跟一个女人xxoo| 国产尤物av尤物在线看| 啦啦啦资源在线观看视频| 成人h动漫精品一区二区无码| 亚洲色无码国产精品网站可下载| 久久久久黑人强伦姧人妻| 无码国内精品久久综合88| 亚洲va欧美ⅴa在线| 和嫂子同居的日子| 亚洲第一极品精品无码久久 | 名门嫡姝-213大h慎入| 哔哩哔哩在线看免费观看| 久久久www成人免费毛片| 国产福利一区二区三区在线视频| 激情都市亚洲一区二区| 乌克兰少妇videos高潮| 娇妻互换享受高潮| 大地资源高清播放在线观看在线电影在线观看 | 1000部精品久久久久久久久| 公的下面好大弄得我好爽| 国产永久免费高清在线观看| 无码国产偷倩在线播放老年人| 久久亚洲国产成人精品性色| 国产麻豆剧传媒精品国产av| 亚洲老妈激情一区二区三区| 国产综合精品| gogogo在线观看免费观看完整版高清| 无码精品国产av在线观看| 赵旭李晴晴最新小说| 中国熟妇videosexfreexxxx片| eeuss在线无码区| 大力女子都奉顺| 电影甜性涩爱| 免费人成在线观看视频播放| gogogo免费高清日本| 他扒开内裤把舌头伸进去| 我们的2018在线观看免费高清| 手机在线看永久av片免费| 浪漫樱花动漫在线观看免费视频 | 国产日韩欧美一区二区东京热| 厨房里强摁做开腿呻吟| 挺进绝色邻居的紧窄小肉| 亚洲欧美日韩国产精品一区二区 | 老汉色av影院| 花房姑娘高清电视剧免费看| 免费人妻av无码专区| 精产国品一二三产区区别在线观看 | 国产精品永久在线观看| 第一次爱的人免费观看电视剧杨磊| 中文字幕在线播放| 国产suv精品201| 中文字幕丰满孑伦无码专区| 深闺禁伦强hnp| 国产成人无码专区| 亚洲色无码a片一区二区麻豆| 国模啪啪久久久久久久| 国产三级在线观看免费| 日韩精品一区二区三区色欲av| javaparsae人妻xxx| 《金瓶艳史》免费观看| 久久婷婷五月综合色99啪| 久久亚洲国产成人精品性色| csgo高清大片免费播放器| 天天燥日日燥| 8090网| 久久精品99国产精品日本| 无码高潮少妇毛多水多水免费| 小箩莉末发育娇小性色xxxx| 被两个按摩师用春药按摩| 强行扒开双腿玩弄av调教视频| 锁锁美同学提不起劲| 做我的爱人| 97色伦亚洲自偷| 两个人看的视频在线观看 | 欧美三级真做在线观看| 超碰97人人做人人爱亚洲| 女人被舔高潮全过| 国产精品久久久久久久妇| 综合乱码av蜜桃avavav | 99国产精品久久久蜜芽| 国产精品永久久久久久久久久| 999久久久免费精品国产| 性做久久久久久久免费看| 国产精品久久久久久久久久妞妞| 青楼男妓h高潮啊哈男男| 老熟妇性老熟妇性色| 精品国产sm最大网站| 国产精品自在线拍国产电影| 国产va免费精品高清在线| 新婚的少妇hd中文字幕| 国产精品vⅰdeoxxxx国产 | 国产精品爽爽久久久久久蜜臀| 337p粉嫩大胆色噜噜噜 | 亚洲国产精品久久久久网站| 今天黄金价格多少钱一克官网| 特级做人爱c级日本| av天堂午夜精品蜜臀av| 欧美人妻aⅴ中文字幕| 仙剑奇侠传在线观看| 无码人妻av一二区二区三区| 国产精品18久久久久久vr| 性做爰ⅹxxx熟女视频| eeuss影院www在线观看| jαpαn丰满人妻hdxxxx| 我的初次内射欧美成人影视| 伊人成人综合网| 女人野外做爰a片妓女| 亚洲精品又粗又大又爽a片| 在线观看的网站| 国产一区二区三区四区五区vm| 蜜臀av性久久久久蜜臀aⅴ| 5d肉蒲团之性战奶水| 一生一世电视剧在线高清免费观看 | 国产精品原创巨作av| 97香蕉超级碰碰碰久久兔费| 国产人妻人伦精品| 97干成人| 我们都要好好的电视剧免费观看高清| 老汉与饥渴的寡妇bd| 人妻少妇精品一区二区三区| 七旬老人为满足需求| 国产精品久久久久jk制服| 国产亚洲色婷婷久久99精品| 啊轻点----大巴太粗太长了| 精品国产精品三级精品av网址| 白嫩白嫩bbbbbbbbb| 波多野结衣办公室系列| 了不起的狐狸爸爸| 一本色道无码道在线观看| 欢乐喜剧人第七季| 成人国产亚洲精品a区天堂| 天堂√中文最新版在线| www.xvideos.com日本| 好姑娘17花房姑娘电视剧中文| 国内精品伊人久久久久777| 久久99精品久久久学生| 美女裸体啪啪到高潮无遮挡| 在线观看的免费网站| 文豪野犬第一季| 成全在线观看高清资源| 欧美十大艳星| 女人被狂躁免费看30分钟| 国产av精品一区二区三区久久| 无人在线观看免费高清电视剧狂飙 | 国产精品videossex久久发布 | 亚洲处破女av日韩精品| 久久综合九色综合97婷婷| 国产成人精品2021| (高h)奶汁乱乳| 人妻少妇精品视频无码专区| 狠狠97人人婷婷五月| 国产超碰人人模人人爽人人添| 影视大全免费追剧| 免费xxxx大片| 国产日产亚洲系列最新版本的特点| 一个人看的www视频播放| 日本影片和韩国影片推荐| 涩涩电影网| 欧美一区二区| 三攻一受4p肉调教| 全国最大色| 色五月丁香六月欧美综合 | 熟女自慰30p| 成人国产片女人爽到高潮网站 | 久久久久99精品成人片试看| 99国产精品久久久久久久久久久| 粉嫩av国产一区二区三区| 欧美黑吊大战白妞欧美大片| 亚洲免费观看视频| 人妻 日韩 欧美 综合 制服| 【乱子伦】国产精品| 亚洲日韩成人av无码网站| 中国videosex高潮对白| 掀开裙子手指伸进去搅动| 其实我很在乎你| 大片视频免费观看视频| 深田咏美在线| 最近2019中文字幕| 国产小受呻吟av视频在线观看| 东北女人毛多又黑a片| 中国妇女做爰视频| 京东app下载安装官网免费下载| 无码精品一区二区三区潘金莲| 无码成人性爽xo视频在线观看| 男女猛烈激情xx00免费视频| 偷偷藏不住小说免费阅读| 手机电影在线观看| japanese成熟丰满人妻| zzijzzij亚洲日本少妇jizjiz| 狠狠色丁香婷婷久久综合麻豆| 老妇性hqmaturetube| japanese五十路熟女| 青青草原视频免费观看| japanese五十路熟女| 美女内射毛片在线看3d| 亚洲欧美日韩在线一区| 国产精品午夜福利在线观看 | japan少妇洗澡videos| 羞羞视频在线观看| 三人成全免费观看电视剧大全 | 平凡的世界电视剧免费观看| zoom动物人配人种| 泰坦尼克号电影| 伊人情人综合网| 无码人妻一区二区三区四区免费看| 秘书在办公室被躁bd在线观看 | 三级三级久久三级久久| 7777影院免费观看电视剧| 精品久久久久久久久久中文字幕| 亚洲一本色道中文无码av | 精品一区二区三区在线视频| 国产成人久久一区二区不卡| 《内衣办公室》日本动漫| 逆流而上的你全集免费观看| 无码亚洲一本aa午夜在线观看| 舌头伸进去添的我爽高潮| 中国xxxxxxxxx18| 亚洲综合久久日日躁综合| 粉嫩被两个粗黑疯狂进出| 亚洲国产精品二二三三区| 日本熟妇人妻xxxx| 免费播放观看在线视频| 国产精品丝袜一区二区三区| 久久久亚洲欧洲日产国产成人无码 | 波多野洁衣| 扒开两片粉嫩的大肉瓣| 花开半夏电视剧| 国产人妻人伦精品熟女| 亚洲码欧洲码一二三四五区别| 和寡妇房东在做爰2| 乱子伦农村xxxxbbb| 久久久久免费看黄a片| 国产又色又爽又黄的视频多人| 婷婷亚洲综合五月天小说| 82岁老人找20多岁小伙子| 电影在线观看完整免费观看| 心里的声音| 高辣h文乱乳h文浪荡小说苏柔| 欧美精品乱码99久久蜜桃| 97精品依人久久久大香线蕉97 | 男人j桶进女人p无遮挡全程| 性欧美丰满熟妇xxxx性| 久久人人爽人人爽人人片av高清| 三年片在线观看免费完整版中文| 国产激情无码一区二区app| 麻花豆传媒mv在线观看网站| 国产午夜精品一区二区三区嫩草| 老熟妇大胆性开放图| 丰满少妇被猛烈进入播放视频 | 把英语课代表按在地上c| 国产涩涩视频在线观看| 日日摸夜夜摸狠狠摸婷婷| 日韩人妻无码精品一区二区三区| 任你躁国语自产在线播放| 无码av天堂一区二区三区| 欧洲精品久久久av无码电影| 亚洲色欲色欲久久综合影院| 国产99久久九九免费精品无码| 6996电视影片免费观看| 暖暖爱视频免费| 鲁邦三世vs名侦探柯南| 欧美性受xxxx狂喷水| 天堂av国产av在线av秋霞| 高清大片csgo免费明星版| 免费男人下部进女人下部视频| 香港三级午夜理伦三级三| 国产丰满大乳大屁股a片图片| 日韩蜜桃一区二区三区| 偷偷色噜狠狠狠狠的777米奇 | 一夜新娘第三季免费观看| 别墅里的肉奴不准穿衣服| 我和子的性关系自述| 喜盈门电影| 藏宝阁未满十八岁显示| 蜜桃臀无码内射一区二区三区| 无码人妻精品一区二区| 精品丝袜国产自在线拍高清| 人妻无码中文字幕| 精品久久久无码中文字幕vr | 日本精品一区二区三区不卡| 刺激videoschina偷拍| 日本少妇激三级做爰在线| 久久久精品人妻久久影视| 国产青草视频在线观看| 金瓶梅1-5电影观看完整版| 米奇电影网| 啊轻点灬太粗嗯太深了快三文轩| 六十路の高齢熟女が中文在线播放| 国产人妻人伦精品一区二区| 亚洲国产成人一区二区在线| 拔萝卜又痛又叫| gogogo手机高清在线| 亚洲综合在线一区二区三区| 肉大榛一进一出免费视频| 将军书房吸奶水1v1| 《少妇精油按摩》无码| 妈妈的朋友电影| hd老熟女bbn老淑女| www国产成人免费观看视频| 亚洲熟妇av一区| 无码一区二区三区在线观看| 国产尤物av尤物在线看| 护士献身取精| 伸进她的短裙里揉捏| cao死你小sao货湿透了| 人体内射精一区二区三区| 77777免费观看电视剧推荐| 香蕉久久一区二区不卡无毒影院 | 亚洲深深色噜噜狠狠网站| 精产国品一二三产区| 性欧美视频videos6一9| 黄网站色视频免费| 1000部精品久久久久久久久| 成全视频在线观看免费高清在线观看 | 少妇激情偷公乱140章| 大地资源在线高清| 欧美在线精品一区二区三区不卡| 无码日韩精品一区二区免费暖暖| 暴躁少女csgo视频大全| 在线观看免费高清视频| 五十路息与子在线播放藤崎樱| 大地资源电影中文在线观看| 色婷婷丁香五月久久综合| 成全视频免费观看在线| 国产女人水真多18毛片18精品| 青春草在线视频免费观看| 精品女同一区二区| japanese日本护士xxxx18一19| 黑人巨大精品欧美黑寡妇av免费| 三年成全免费高清大全| 国产精品扒开腿做爽爽爽a片小说| 果冻传媒独家原创在线观看| 老熟女五十路乱子交尾中出一区| 国精产品一区二区三区公司 | 日本护士毛茸茸| 日本亚洲色大成网站www久久| 韩漫在线观看免费漫画入口| 机长脔到她哭h粗话h| 星空无限mv国产剧苏畅| 少女大人免费观看电视剧1 | 老师你的真嫩真紧av視頻| 免费看黄网站app网址| 国产乱对白刺激视频| 嗯灬啊灬把腿张开灬a片| 女の乳搾りです在线观看| 9.1玩命加载中(免费版)| 欧美14一15sex性hd| 亚洲欧美婷婷五月色综合| 后入内射国产一区二区| 国产精品自在线拍国产电影| 日本高清在线一区二区三区| 97精品依人久久久大香线蕉97 | 毛茸茸性xxxx毛茸茸毛茸茸| 日本熟妇毛茸茸xxxxx| 强壮公让我夜夜高潮a片| 贱奴校花挨脔日常h惩罚| 美丽的小蜜桃| 同房交换高潮bd| 无码人妻丰满熟妇啪啪| 深夜福利在线观看视频| 磁力搜索引擎| 婷婷97狠狠| av大片在线无码永久免费| 久久久久久精品免费看sss | 欧美重囗味sm群虐视频| 扒开腿狂躁女人爽出白浆| 精品日本一区二区三区在线观看| 农民工猛吸女大学奶头| 人妻少妇波多野结衣| 国产精品亚洲а∨无码播放| 日韩中文字幕区一区有砖一区| 精品无码国产av一区二区| 国产精品成人99一区无码| 日本xbox 18| 三年大片在线观看免费完整版| 在线观看精品视频网站| 医生h调教纯情丫头扩y器| 国产精品人妻| ((中国丰满少妇))伦理hd| 免费视频在线观看网站| 乳庭乱互换(h)| 扒开腿狂躁女人视频免费| ass美女撒尿pics| 卫老与淑蓉7一12集| 韩国日本三级在线观看| 天堂а√在线中文在线| 天天综合天天做天天综合| 失踪人口电影免费完整版在线观看| 逆流而上的你全集免费观看| 被教官按在寝室狂c到腿软漫画| 国产99久久亚洲综合精品| 韩国成人理伦片免费播放| 成人无码一区二区三区| tube8韩国| 99爱在线精品免费观看| 亚洲国产精品18久久久久久| 性88分钟| 美女扒开内裤羞羞网站| 亚洲一区二区三区日本久久九| 樱桃视频高清免费观看在线 | 风雨送春归电视剧全集在线观看| 国产精品中文久久久久久久| 趴下让老子爽死你| 最好看的中文字幕mv电影| 被黑人玩得站不起来| chinese高潮videos| 国产精品视频一区| www.xvideos.com日本| 毛葺葺老太做受视频| 国模无码一区二区三区| 性xxxx18免费观看视频| 国产精品无码素人福利不卡| 爽爽影院免费观看| 好吊色欧美一区二区三区视频| 污污内射在线观看一区二区少妇| 久久精品中文字幕有码| 在线精品一区二区三区| 一本色道在线久88在线观看片 | 国自产偷精品不卡在线| 97亚洲狠狠色综合久久久久| 四川老妇山边性对白| 最近中文字幕在线mv视频在线| 欧美伦理片| 亚洲三区在线观看无套内射| 亚欧洲精品在线视频免费观看 | 女邻居做爰2伦理| 性videostv另类极品| 99久久免费国产精品| 无码av久久久久久久久| 少妇做爰免费视频网站| 成全在线观看免费全集高清| 天天爽天天爽夜夜爽毛片| 扒开腿挺进肉嫩小泬电影动漫| 欧美人与物videos另类xxxxx| 四虎影视1304t| 人妻蜜桃久久av一区| 免费观看满十八岁电视剧在线观看| 男人猛吃奶女人爽视频| 久久久国产精华液| 天堂网在线.www天堂在线资源| 怡红院av一区二区三区 | 亚洲日韩欧美一区久久久久我| 免费观看片的app下载| 扒灰儿媳妇的经典顺口溜| 国产二级一片内射视频播放| 朋友人妻滋味2| 中国女人free性hd| 国产成人无码精品久久久免费| 四虎国产精品免费久久久| 国产精品久久久久无码av| 法国空姐在线观看| 国产成人久久精品流白浆| 最近2019中文字幕大全视频1| 大肉大捧一进一出好爽视频| 精品卡一卡二卡3卡高清乱码| 暴躁老妈高清免费观看电视剧| 含着她的花蒂咬到高潮| 三年在线观看免费国语| 他缓慢而有力的撞着视频| 大地影视中文资源7| 蜜臀av色欲a片无码精品一区| 中国china露脸自拍性hd| 波多野结衣番号| 《美国式禁忌》02| 美妙人妇系列1~100| 《乳色吐息》在线观看樱花| 吃奶一边吃一边流下来是什么原因 | 晚上睡不着偷偷看b站| 菠萝蜜影视免费观看电视剧高清| 丰满岳乱妇在线观看中字无码 | 久久精品免费观看国产| 无码人妻丰满熟妇啪啪网站| javaparser少妇高潮| 岳故意装睡让我挺进去观看| 6996电视影片免费人数2024年| 高辣h文乱乳h文浪荡小说苏柔| 差差差很疼30分钟视频| 99re6在线热播精品免费| 国产综合无码一区二区色蜜蜜 | 波多野结衣的电影| 好团圆在线观看全集免费播放下载| 小草青青免费观看高清| 爱性久久久久久久久| 国产成人无码区免费网站| 欧美 大码 变态 另类| 极品少妇高潮啪啪av无码| 天天燥日日燥| gogo全球高清大胆国模摄影| 日本护士xxxx做爰| 欧美大片免费ppt| 国产精品欧美一区二区三区不卡| rylskyart裸体全身| 精品无码国产一区二区三区麻豆| 国产精品毛片va一区二区三区| 性满足bbwbbwbbw| (原创)露脸自拍[62p]| 精品国产a∨无码一区二区三区| 嫩bbb搡bbbb榛bbbb| 亚洲中文无码| 小辣椒福利视频导航| 亚洲国产精品成人午夜在线观看| 娇妻3p┅快┅┅用力啊┅┅| 90后极品粉嫩小泬20p| 成年在线观看免费人视频| 野花视频在线观看免费| 人妻中文字幕无码系列| 国产亚洲精品自在久久| 幻女bbwxxxx4444| 毛片免费全部无码播放 | 成人无码免费一区二区中文| 自己撅起来乖乖挨c烂h| 亚洲午夜福利在线视频| 岳的大肥屁熟妇五十路| 荡公乱妇11部分| 边啃奶头边躁狠狠躁视频免费观看| 2019日韩中文字幕mv| 回娘家让爹消火好吗| 欧美日韩精品一区二区在线视频 | 乱色精品无码一区二区国产盗| xxxxx做受大片在线观看免费| 陈情令免费观看全集| 全黄h全肉禁乱公姚蕊| 被老外添嫩苞添高潮np视频| 男人j进女人p免费视频| 88久久精品无码一区二区毛片| 草莓香蕉菠萝蜜丝瓜怎么做| 他强把手指伸进我的下面| jlzzzjlzzz国产免费观看| 国产伦精品一区二区三区免费| 丰满熟女人妻一区二区三| 国产99久久九九免费精品无码| 久久亚洲中文字幕无码| 337p人体粉嫩胞高清视频| 大地资源一中文在线观看| 诱人的大乳奶3做爰| 色偷偷偷久久伊人大杳蕉| 亚洲国产精品一区二区www| 天美传媒精品麻豆| 三人成全免费观看电视剧大全 | 好大好爽喷水了国产欧洲| 国产成人啪精品视频免费网| 真人一进一出120秒试看| 男人用嘴添女人私密视频| 校园恋爱簿| 亚洲欧美日韩国产精品一区二区| 亚洲妇熟xxxx妇色黄| 他扯掉她的内裤猛地挺进她 | 亚洲级αv无码毛片久久精品| 白嫩日本少妇做爰| 久久久久无码国产精品一区| 性欧美乱妇高清come| 国产a国产片国产| 四六级考试报名官网入口| 十八成人网| 人妻无码一区二区不卡无码av| 最好看的2018中文2019| 大肉大捧一进一出好爽动态图| 老头边吃奶边挵进去呻吟| 亚洲免费人成在线视频观看| yandex.com| 色爱a∨综合区| 少妇人妻偷人精品免费视频| 亚洲一区二区三区无码久久| 一本精品中文字幕在线| 国产精品久久久久久一区二区三区| 俄罗斯引擎yandex网站| av在线免费观看| 几个男人扒开腿揉捏花蒂| 24小时日本在线观看| japanese高潮流白浆| 99无人区码一码二码三| 国产又猛又黄又爽| 99久久久无码国产精品秋霞网| 在线观看高清| 《鬼迷心窍》完整版在线观看| 无码人妻h动漫| 西西人体www大胆高清视频| 俄罗斯丰满少妇bbwbbw| 青青草app| 火影忍者在线播放| 国产激情电影综合在线看| 国产精品videossex久久发布 | xxxx日本熟妇hd| 亚洲精品久久一区二区三区777| 意大利电影巜丰满的欲妇| 国内少妇人妻偷人精品免费视频 | xxxx日本| 女人被添全过程a一片| 暴躁老姐的csgo| 国产午夜无码视频在线观看| 亚洲精品国偷拍自产在线观看蜜桃| xxxxx性bbbbb欧美| 姑娘第4集在线观看免费播放| 岳女警花共侍一夫翘臀| 99国产精品自在自在久久| 色欲色香天天天综合无码www| 丁香花免费高清视频完整版| 国产电影在线观看免费全集电视剧| 一本色道久久综合无码人妻| 丰满女邻居做爰3| 亚洲国产精品第一区二区| 久久精品国产成人av| 久久人妻少妇嫩草av蜜桃麻豆| 久久久免费精品国产色夜 | 中文字幕乱妇无码av在线| 亚洲日韩中文字幕一区| 奈克瑟斯奥特曼| 星空在线观看免费高清| 电影《乡下女艳史》| 爱探险的朵拉第八季| 斯巴达克斯第一季完整在线观看高清 | 国产精品无码永久免费不卡| 国产精品扒开腿做爽爽爽a片小说| 久久亚洲精品中文字幕| 丰满人妻被黑人猛烈进入| 高撅红肿h羞耻罚老师受学生攻| 扒开老女毛荫荫的黑森林视频| jzzijzzij日本成熟少妇| 无码乱人伦一区二区亚洲一| 国内大量偷窥精品视频| av无码精品一区二区三区| 99国产精品偷窥熟女精品视频| 在线看波多野结衣av| 玩弄窄裙教师麻麻| 中文字幕 一区二区三区| 色七七影院| 中文字幕日本最新乱码视频 | 在线高清观看免费观看| 野花香电视剧完整版高清| 亚洲第一综合天堂另类专| 夫妇当面交换作爱| 人人爽人人爱| 边摸边吃奶边做爽动态| 国产成人精品无码播放| 国产一区二区三区| 日韩人妻熟女中文字幕| 邻居交换做爰5| 国产精品久久久久精品日日| 国产农村妇女精品一二区| 99国内精品久久久久久久| 久久国产成人午夜av影院| 吃瓜黑料视频永久地址| 在厨房拨开内裤进入毛片| 精品国产伦一区二区三区在线观看| 美女内射毛片在线看3d| 精品无码成人久久久久久| 久久天天躁狠狠躁夜夜| 日本japanese熟睡人妻| 暴躁少女csgo高清观看方法| 国精产品一区一区三区有限公司杨 | 亚洲色偷偷色噜噜狠狠99网| 97久久人人超碰国产精品| 国产精品视频一区二区三区不卡 | 99热亚洲色精品国产88| 女人被狂躁60分钟视频| 亚洲色无码a片一区二区麻豆| 青青草原精品99久久精品66| 好男人在线播放| 一天高潮四次还想要| 牛牛视频一区二区三区| 尤物yw午夜国产精品视频| 青青青国产精品一区二区| 中国熟妇xxxx| 欧美性人人天天夜夜摸| 8848高清电影电视剧在线观看免费 | 欧亚乱熟女一区二区在线| 国产好爽…又高潮了毛片 | yin荡的老师系列第6部分 | 久久女婷五月综合色啪小说| 高冷受做到失禁颤抖哭着求饶| 她扒下内裤让我爽了一夜a片| 黑人强开嫩模又小又紧| 精品人妻无码一区二区三区性| 国产精品无码麻豆放荡av | 久热国产vs视频在线观看| 全黄性性激高免费视频| 日本大尺度做爰呻吟| 亚洲国产精品综合久久20| 色噜噜成人av在线av8| 亚洲一区二区久久69| 爱自修室第一季全集免费播放| 狠狠躁夜夜躁人人爽超碰97香蕉| 少妇全黄性生交片| 人妻体内射精一区二区三四| 中文字幕免费高清电视剧| 揉腿却揉到两腿之间是湿的 | 辣妹子影视电视剧在线观看免费高清| 日本在线av| gogo人体gogo西西大尺度高清| 少妇spa推油被扣高潮| av人妻无码久久一本不卡| 欧美另类尿眼极限扩张| 菠萝蜜视频入口| 密室大逃脱第三季| 老头猛挺进小雯的体内视频| 少妇高潮毛片色欲ava片| 亚洲欧美成人一区二区三区| 极品人妻videosss人妻| 乘风2023在线观看免费完整版 | 巜饥渴的少妇在线观看| ysl水蜜桃86官方官网| 四虎永久地址www成人| 饥饿站台在线观看| 国产精品成人国产乱| 工头搡老女人老妇女老熟女 | 人妻在厨房被色诱 中文字幕| 99国产精品自在自在久久| 国产成人a视频高清在线观看| 乌克兰肥妇黑毛bbw| 熟妇人妻无码xxx视频| 三年中国免费高清观看| 夜鲁鲁鲁夜夜综合视频| 秋霞在线观看视频| 国产成人免费视频| 国产精品无码麻豆放荡av| 精品国产一区二区三区久久| 凹凸久久人人澡超碰凹凸| 善良的岳hd中字伦理| 色婷婷成人做爰a片免费看网站 | 岳故意装睡让我挺进去观看| 国产精品成人国产乱| 三年在线播放免费观看大全8集| 熟女自慰30p| 国精产品一区一区三区mba下载 | 天堂aⅴ无码一区二区三区| 粉色视频入口| 学生妹亚洲一区二区| 老师真嫩真紧好爽20p| 免费追剧app软件| 一本精品99久久精品77| 日本在线视频| 钟丽缇色戒| 日本熟妇人妻xxxxx| 翁虹挡不住的风情| 日本三线免费视频观看| 我和岳m愉情xxxx| 亚洲乱色熟女一区二区三区蜜臀| 部队里在部队的轮流生活 | 少妇粉嫩小泬喷水视频| 少妇高潮喷潮久久久影院| csgo高清大片免费播放器| mk18cqbr少女前线| 野外玩弄大乳孕妇| 亚洲国产精品99久久久久久| 亚洲成色www久久网站瘦与人| 金刚狼在线观看| 午夜亚洲国产理论片2020| 美丽人妻在夫前被黑人| 小峓子的味道4| 色偷偷偷久久伊人大杳蕉| 亚洲色综合狠狠综合区| 岳打开双腿开始配合交换| 国产精品999| 他扒开内裤舌头伸进去添| 4438xx亚洲最大五色丁香| 香蕉久久久久久av成人| 亚洲国产精品一区二区成人片| 国国产自偷自偷免费一区| 51看片(免费看片)| 原来神马电影琪琪网最新电视剧| 娇妻第一次尝试交换| gogogo在线高清免费完整版| 四虎影视4hu4虎成人| 久久精品99国产国产精| 爽死我了太深了使劲玩我| 人妻教师痴汉电车波多野结衣| 国产av国片偷人妻麻豆| 天天鲁一鲁摸一摸爽一爽| 性欧美xxx| 99re6热在线精品视频播放| 国产亚洲欧美日韩俺去了| 亚洲一区二区三区播放| 中日韩高清无专码区2021 | 日日碰狠狠躁久久躁蜜桃| 中文字幕在线精品视频入口一区 | 白洁少妇第1一178章| 波多野结衣 无码| 第一次接黑人嫖客| 久久久久久亚洲精品中文字幕| 国产色欲av一区二区三区| 乱人伦中文视频在线| 含羞草app下载| 夜夜躁日日躁狠狠久久av| 狠狠爱ady亚洲色| gogogo国语版免费播放| 精品久久8x国产免费观看| 阳茎伸入女人过程| 天天看片免费高清观看| 老根嫩草1一40淑媛全文| 国产精品久久久久久久久久免费| 日日噜噜夜夜狠狠va视频v| 制服丝袜av| 成人做爰a片免费看网站| 国产一国产看免费高清片| 久久精品人人人人人人| 免费视频观看| 林静公交车被做到高c| 国产成人艳妇aa视频在线| 鲁一鲁一鲁一鲁一澡| 精品国产sm最大网站| 中文文字幕文字幕高清| 成色好的y31| 按摩师摸到我g点高潮了正常吗| 国产人澡人澡澡澡人碰视频 | 娇妻卧室含辱迎接领导是哪部电影| 亚洲熟女av中文字幕男人总站| 边摸边吃奶边做爽动态| 女m被s玩胸虐乳哭着求饶| 国产精久久久久久精品电影蜜| 她很漂亮韩剧高清在线观看| 天天躁日日躁狠狠躁免费麻豆| 色欲档案之麻雀台上淫| 老司机午夜免费精品视频| 色偷偷色噜噜狠狠网站久久| 亚洲国产成人久久精品大牛影视| 三年片观看免费观看大全动漫| 欧美人体艺术网| 国外网禁泑女网站1300部| 久久精品中文騷妇女内射| 私人毛片免费高清影视院|